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Purpose of review

Although neuroimaging in motor neuron diseases (MNDs) continues to generate important novel academic
insights, the translation of novel radiological protocols into viable biomarkers remains challenging.

Recent findings

A multitude of technological advances contribute to the success of academic imaging in MNDs spanning
from the availability of high-field platforms, novel imaging techniques, quantitative spinal cord protocols to
whole-brain spectroscopy. International collaborations, protocol harmonization efforts, open-source image
analysis suites also fuel developments in the field. Despite the success of academic neuroimaging in MND,
the challenge of meaningfully interpreting radiological data from single patients, especially soon after
symptom manifestation, and accurately classifying them into relevant diagnostic, phenotypic and
prognostic, categories remain challenging, and tracking accruing disease burden over the short follow-up
intervals typically utilized in pharmacological trials is also difficult.

Summary

Although we acknowledge the academic achievements of large descriptive studies, an unmet priority of
neuroimaging in MND is the development of robust diagnostic, prognostic and monitoring applications to
meet the practical demands of clinical decision-making and pharmacological trials. A paradigm shift from
group-level analyses to individual-level data interpretation, accurate single-subject classification and
disease-burden tracking is therefore urgently needed to distil raw spatially coded imaging data into
practical biomarkers.
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INTRODUCTION

Quantitative neuroimaging methods are routinely
used in clinical trials of multiple sclerosis and
increasingly implemented in pharmacological trials
of neurodegenerative conditions. Despite consider-
able advances in computational imaging in motor
neuron diseases (MNDs), it has primarily contrib-
uted academic insights to date on phenotype and
genotype-associated signatures, presymptomatic
alterations, propagation patterns and so on and
has not been developed into viable clinical markers
with pragmatic utility in diagnostic, prognostic and
clinical trial applications. The gap between the suc-
cess of academic studies and the lack of translation
into pragmatic, routine clinical protocols is striking.
One of the examples that epitomises this contra-
diction is the achievements of large, group-level
studies, often with hundreds of participants who
succeed in characterizing disease-specific traits
[1

&&

,2], and the persistent challenge of meaningfully
interpreting single-patient data from specific
rs Kluwer Health, Inc. All rights rese
individuals [3,4]. Developments in MND imaging
are best discussed from a dual technological and
clinical perspective. The relentless methodological
advances in neuroimaging enable unprecedented
single-to-noise ratios, spatial resolution, fast acquis-
ition times and so on facilitating richer and higher
quality raw data. On the contrary, conceptual devel-
opments have helped to shift the focus from
rved. www.co-neurology.com
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KEY POINTS

� Computational neuroimaging contributed important
academic insights into phenotype and genotype-
associated signatures and propagation patterns in
motor neuron disease.

� High-field MR platforms, quantitative spinal cord
protocols, whole-brain spectroscopy and novel white
matter imaging techniques gave new momentum to
motor neuron disease imaging.

� International collaborations, protocol harmonization
efforts, the availability of robust open-source image
analysis suites also fuelled developments in
biomarker development.

� The accurate classification of single imaging datasets
from individual patients into relevant diagnostic,
phenotypic and prognostic categories herald viable
clinical applications.

� Disease burden quantification and longitudinal
radiological assessments should be incorporated into
pharmacological trial designs to monitor disease
progression and assess response to therapy.

Motor neuron disease
pursuing descriptive studies to develop models with
potential practical utility such as prognostic indica-
tors, single-subject classification and identification
of clusters with unique radiological, clinical and
genetic characteristics. Accordingly, we review
recent developments in MND imaging from a dual
academic-clinical perspective with an earnest effort
to identify the barriers of translating methodolog-
ical advances into viable biomarkers.
PHENOTYPIC HETEROGENEITY

Motor neuron disease imaging continues to be
dominated by studies of amyotrophic lateral scle-
rosis, despite the clinical relevance of accurately
categorising paucisymptomatic patients into the
appropriate diagnostic categories before fulfilling
clinical criteria. Primary lateral sclerosis is a notori-
ously difficult diagnosis to establish given its over-
lapping clinical features with UMN-predominant
ALS [5,6

&

,7], but the recently published diagnostic
criteria now permit the labelling of early PLS
patients as ‘probable PLS’ [8]. The imaging studies
of these ‘early’ PLS cohorts have revealed a pattern
consistent with what is now called ‘definite PLS’
validating the utility of the new criteria [9,10].
Hereditary spastic paraparesis (HSP) has overlapping
clinical features with PLS and the marked cortico-
spinal, corpus callosum and, depending on geno-
type, cerebellar degeneration is also reminiscent of
some of the radiological alterations observed in ALS
2 www.co-neurology.com
[11,12,13
&&

,14]. Low-incidence ALS mimics, such as
postpolio syndrome, was traditionally associated
withwidespread cerebral disease, but recent imaging
studies have highlighted the lack of atrophy both in
supra-tentorial and infra-tentorial regions [15,16].
Kennedy’s disease or spinal and bulbar muscular
atrophy (SBMA) has also been increasingly eval-
uated by computation imaging studies and some
degree of cerebral involvement has been consis-
tently captured [17]. Other LMN conditions such
as adult-onset SMA are also increasingly evaluated
radiologically, conditions wherein the implementa-
tion of novel spinal protocols may be particularly
pertinent [18,19]. Although descriptive studies of
specific MND variants along the LMN-UMN spec-
trum are of undeniable academic interest, the chal-
lenge of mathematically classifying single patients
into these categories remains notoriously challeng-
ing [4,20–23]. The pursuit of robust classification
studies seem like an obvious clinical priority given
the strikingly divergent survival profile of these
MND subtypes, for example PLS vs. ALS [5].
EXTRA-MOTOR ALTERATIONS

Imaging studies of MNDs have traditionally focused
on primary motor regions such as the precentral
gyrus, brainstem and corticospinal tracts [13

&&

,24–
26]. In recent years, considerable effort has been
made to the characterization of extra-pyramidal
motor involvement, and nigrostriatal, cerebellar,
basal ganglia, pre and supplementary motor regions
have been increasingly evaluated [12,27,28

&

,29,
30,31]. These studies have clearly demonstrated that
gait impairment, decline in dexterity, dysarthria
and dysphagia are not solely driven by pyramidal
degeneration, therefore seeking direct correlations
between motor cortex or corticospinal tract meas-
ures and functional disability scores may be erro-
neous [32]. Recent imaging studies departed from
the evaluation of motor networks altogether and a
series of articles have focused on the characteriza-
tion of frontotemporal, thalamic, parietal and occi-
pital alterations in MND cohorts [33

&

,34
&&

,35–37].
METHODOLOGICAL ADVANCES

In addition to specificmethodological advances, the
progressive separation of research and clinical imag-
ing facilities allows the implementation of dedi-
cated research protocols, which are often much
longer. The widespread availability of 3T platforms
led to the generation of large, high-quality data sets
and the first publications of ultra-high field plat-
forms are now also emerging from 7 Tesla scanners
[38–40]. PET data are increasingly acquired in
Volume 36 � Number 00 � Month 2023
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conjunction with MRI data and contributed impor-
tant metabolic insights to complement MR-based
structural analyses [41,42]. Imaging studies of MND
have traditionally relied on a high-resolution 3D
structural T1-wieghted and a diffusion-weighted
imaging to evaluate white mater alterations.
Although these two elements remain at the core
ofmost protocols, a number of novel and innovative
imaging methods have now been trialled and have
proven remarkably successful in generating addi-
tional insights. White matter imaging in MND has
moved beyond standard DWI/DTI and NODDI has
emerged as a powerful tool with seemingly superior
detection sensitivity both in symptomatic and pre-
symptomatic MND cohorts [43–45]. High spatial-
resolution DTI and non-Bayesian whiter diffusion
sequences are increasingly trialled in MND, as they
more offer amore nuanced characterization of cross-
ing fibres [44]. Muscle imaging is another intriguing
frontier of MND imaging, which, while not per-
formed routinely, provides a measure of muscle
degeneration secondary to denervation and such
as indirect proxy of LMN involvement [46,47]. Spi-
nal cord MRI is one of the success stories of MND
imaging [48,49]; it has captured presymptomatic
changes inC9orf72mutation carriers [50],metabolic
alterations in SOD1 carriers [51], shown associations
with respiratory compromise [52], correlations with
clinical disability [48,53,54] and captures both the
UMN and anterior horn aspects of ALS [55–59].
Spinal DTI protocols captured both descending cor-
ticospinal and ascending sensory tract degeneration
in ALS [53,56,57,60–63]. Spinal magnetization
transfer imaging (MTI) also detected accruing cord
disease in ALS [53,56,57]. Cord spectroscopy yielded
revealed considerable clinico-radiological associa-
tions [51,64,65]. Methodological advances in spinal
imaging, meticulous respiratory and cardiac gating
and improved analysis suites, led to improved noise
filtering, spatial registration and raw data quality,
which in turn led to clinically relevant research
findings [48]. As with other emerging imaging
modalities, quantitative spinal imaging is yet to
filter down to everyday clinical and pharmacolog-
ical applications. Quantitative susceptibility map-
ping or QSM is other modality that has been
increasingly explored by academic imaging studies
and has added interesting academic insights re cer-
ebral iron deposition. In specific applications, such
as studies centred on ferroptosis or iron-chelation,
these modalities may be of particular interest [66].
Sodium imaging is yet another innovative
approach, which has only been recently applied
to ALS cohorts and seems to have excellent detec-
tion sensitivity for neurodegenerative change [67].
MRS spectroscopy has long been applied to ALS
1350-7540 Copyright © 2023 Wolters Kluwer Health, Inc. All rights rese
cohorts, but voxel placement was traditionally cen-
tred on motor areas in single-voxel protocols [68

&&

].
With the recognition of frontotemporal change in
ALS and PLS, single voxel techniques have been
increasingly applied outside the motor cortex
[34

&&

]. With the advent of robust whole-brain multi-
voxel protocols, metabolic alterations can now be
assessed over the entire cerebrum [69,70]. As with
other modalities, fMRI was initially used in studies
with motor paradigm, before trialled in cognitive
and sensory paradigm, and more recently, resting
fMRI is routinely recorded, which permits posthoc
connectivity analyses [24,71].
ADVANCES IN STUDY DESIGN

In addition to methodological advances, significant
advances took place in study design. The traditional
approach of characterizing large symptomatic
cohorts stratified by genotype or phenotype is
increasingly superseded by smaller studies of homo-
genous clinical or demographic characteristics. The
caveat of recruiting unselected patients into a single
study group is that they are likely to be in different
stages of their disease, have different phenotypic
traits, different clinical characteristics both in terms
of motor disability and cognitive profile. The result-
ing statistical maps of such studies are unlikely to be
representative of specific disease subgroups. At the
very least, in single-group descriptive studies,
patients should ideally be relatively uniform in their
symptom duration or disability profile. More recent
studies have departed from large cross-sectional
study designs and increasingly rely on multitime-
point longitudinal analyses, which are not only
ideal to map progressive changes, but they also
enable the ranking of various radiological measures
in their sensitivity to capture progressive changes in
relatively short follow-up intervals [22,72]. Two-
time point longitudinal studies are ill-suited to char-
acterize longitudinal trajectories and progressive
changes may be misconstrued as linear decline,
which is unlikely to represent the dynamics of
underlying pathological processes. Multitime-point
studies, on the contrary, may detect curvilinear
changes and confirm the ceiling or flooring- effects
of specific integrity measures. There is a notion that
white matter degeneration – or at least its radio-
logical proxies – may be a relatively early feature of
ALS, as corticospinal and corpus callosum changes
can be readily captured around the time of the
diagnosis [73]. These attributes make white matter
measures good diagnostic markers; however, several
studies indicate that they may exhibit limited fur-
ther change on follow-upmaking them relatively ill-
suited for monitoring purposes. Grey matter
rved. www.co-neurology.com 3
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measures, on the contrary, can be relatively pre-
served around the time of diagnosis, but often dis-
play progressive change over the clinical course of
ALS. These observations are further supported by
presymptomatic studies wherein white matter
changes and subcortical grey matter changes are
often detected before cortical involvement [45,74].
It is therefore increasingly clear that no single imag-
ing index can address the biomarker requirements of
both diagnostic and monitoring applications and
that a panel of several markers with complementary
detection profiles (early vs. longitudinal) are
required. One of the most exciting facets of imag-
ing-based studies in MND is the increasing availabil-
ity of presymptomatic data sets [75]. Early proof-of-
concept presymptomatic studies often relied on
admixed SOD1-C9orf72 cohorts to demonstrate
ALS-associated changes before symptom onset [76–
79], but these studies have now been superseded by
large genotype-specific studies. Corticospinal tract
degeneration [80], superior spinal cord NAA reduc-
tions [51] and fronto-temporal hypometabolism [81]
were described in asymptomatic SOD1 carriers. Fron-
totemporal, parietal, cerebellar and subcortical grey
matter changers [82–85] have been described in
C9orf72 hexanucleotide repeat expansion carriers.
Corticospinal [50,85], commissural, orbitofrontal,
cingulate and uncinate degeneration is also a com-
mon white matter finding [45,74,85,86]. Neurite
orientation dispersion and density imaging (NODDI)
captured early white matter degeneration [45] and
presymptomatic frontotemporal and subcortical
hypometabolism has also been described [41]. To
account for motor disability, motor imagery is
increasingly used instead of motor paradigms and
has been successful in capturing network level con-
nectivity alterations in motor circuits [27,28

&

].
FROM GROUP-LEVEL ANALYSES TO
SINGLE PATIENT DATA INTERPRETATION

In recognition of the importance to interpreting
single data sets from individual patients, a multi-
tude of statistical approaches has been trialled in
MND. Relatively simple strategies, such as z-scoring
with reference to demographically matched con-
trols [22,87], or discriminant function analyses
[88], were soon superseded by more complex
machine-learning models [20]. Machine-learning
algorithms often rely on a selection of best discrim-
ination MR features to reduce computational needs
and simplify models without sacrificing classifica-
tion accuracy [88–90]. Imaging-based machine
learning models in MND often include a variety
of structural, diffusivity and functional indices.
Machine learning strategies are often discussed
4 www.co-neurology.com
in terms of ‘supervised’ and ‘unsupervised’
approaches. Unsupervised models, such as cluster-
ing (K-means, hierarchical, probabilistic) or dimen-
sionality reduction strategies (principal component
analysis, singular value decomposition) may
uncover naturally occurring data patterns without
a priori hypotheses and reliance on carefully labelled
training data. Supervised learning algorithms such
as linear regression, logistic regression, naive bayes,
support vector machines (SVMs), decision trees, K-
nearest neighbour algorithms, random forests and
so on need well labelled training data for accurate
classification [21,90]. Although binary classification
into ‘healthy’ vs. ‘ALS’ categories was relatively suc-
cessful [88], the accurate categorization of patients
with various MND phenotypes has proven more
challenging [4]. Predicting prognosis in individual
patients based on single-subject clinical or imaging
data is another exciting frontier of ALS research with
huge practical relevance and few promising studies
have already been published [3,21,59,91,92

&

].
SCRUTINIZING ACADEMIC CONCEPTS

With ever-improving spatial resolution, the imple-
mentation of network-level analyses and the unpre-
cedented detection sensitivity of novel metabolic,
diffusivity and connectomics methods, imaging is
now well placed to examine prevailing biological
concepts such as stage-wise propagation, cortico-
fugal spread, trans-synaptic propagation, network-
wise degeneration, neuroplasticity, motor reserve,
cognitive reserve and disease clusters [93–
95,96

&

,97]. Several of these concepts were originally
based on observations from animal studies or
extrapolated from postmortem data; therefore,
one of the roles of advanced imaging in ALS is the
critical appraisal of these concepts in vivo in human
studies. Although disease-burden patterns have
been repeatedly mapped to pathological stages
[98,99], large multimodal longitudinal studies are
still required, ideally spanning from the presympto-
matic phase to phenoconversion, to dissect the
trans-synaptic, metabolic, inflammatory and devel-
opmental components of disease propagation.
RESEARCH PRIORITIES

Although the continued publication of ever larger
andmethodologically complex descriptive studies is
exciting, ultimately, the emergence of actionable
single-subject data interpretation frameworks will
bring the long-awaited transition from academic
studies to viable applications with genuine clinical
utility. Any framework that reliable detects MND-
associated changes and classifies an individual
Volume 36 � Number 00 � Month 2023
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subject into clinically relevant phenotypic, survival
or prognostic categories while distinguishing him
from common clinical mimics would offer practical
benefits and potentially curtail the notoriously long
diagnostic journey most patients with MND face
[21,91]. Similarly, any combination of imaging-
derived metrics that allow the precision tracking
of accruing disease-burden would be a welcome
addition to the monitoring panels of clinical trials.
Single-centremachine-learning initiatives have pro-
vided promising proof-of-concept data, but these
have to be validated by large blinded, extraneous
data sets, potentially acquired on different scanning
platforms. The superiority of radiological markers
has to be demonstrated against cheaper serum or
CSF-derived wet biomarkers or bed-side clinical
measures or rating scales. The practical drawbacks
of imaging in MND, such as accessibility, high attri-
tion rates, poor tolerability, expenses, the complex-
ity of interpretation have to be addressed with
candour, and the results of negative studies need
to be disseminated as a lesson for future studies.
AQ6
CONCLUSION

Neuroimaging in MND has benefited from both
momentous methodological advances and the
long-awaited departure from phenotypically
admixed descriptive studies. Given the plethora of
confirmatory cross-sectional studies, a clear priority
of MND imaging is the accurate classification of
single-subject data from individual patients, early
phenotypical categorization, prognostic modelling
and phenoconversion prediction in asymptomatic
mutation carriers. Longitudinal studies of large
cohorts have to be superseded by studies that can
accurately map disease propagation in individual
subjects, so that thesemethodsmay be implemented
in clinical trials. The pursuit of direct correlations
between cerebral measures and motor disability
seems naive, as LMN involvement contributes sig-
nificantly and sometime disproportionately to clin-
ical disability.AlthoughMRspectroscopy seems tobe
underutilized, findings from fMRI findings may be
over-interpreted. Studies should ideally incorporate a
multimodal panel of structural, diffusion, functional
andmetabolicmetrics anda combinationof cerebral,
spinal and muscle protocols should be implemented
to cover the entire neuro-axis from cortex to muscle.
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