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Abstract

Background Primary lateral sclerosis (PLS) is traditionally regarded as a pure upper motor neuron disorder, but recent cases
series have highlighted cognitive deficits in executive and language domains.

Methods A single-centre, prospective neuroimaging study was conducted with comprehensive clinical and genetic profiling.
The structural and functional integrity of language-associated brain regions and networks were systematically evaluated in
40 patients with PLS in comparison to 111 healthy controls. The structural integrity of the arcuate fascicle, frontal aslant
tract, inferior occipito-frontal fascicle, inferior longitudinal fascicle, superior longitudinal fascicle and uncinate fascicle was
evaluated. Functional connectivity between the supplementary motor region and the inferior frontal gyrus and connectiv-
ity between Wernicke’s and Broca’s areas was also assessed.

Results Cortical thickness reductions were observed in both Wernicke’s and Broca’s areas. Fractional anisotropy reduction
was noted in the aslant tract and increased radical diffusivity (RD) identified in the aslant tract, arcuate fascicle and superior
longitudinal fascicle in the left hemisphere. Functional connectivity was reduced along the aslant track, i.e. between the
supplementary motor region and the inferior frontal gyrus, but unaffected between Wernicke’s and Broca’s areas. Cortical
thickness alterations, structural and functional connectivity changes were also noted in the right hemisphere.

Conclusions Disease-burden in PLS is not confined to motor regions, but there is also a marked involvement of language-
associated tracts, networks and cortical regions. Given the considerably longer survival in PLS compared to ALS, the impact
of language impairment on the management of PLS needs to be carefully considered.
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FSL FMRIB s Software Library

FTD Frontotemporal dementia

GM Grey matter

HADS Hospital Anxiety and Depression Scale

HC Healthy controls

IFO Inferior occipito-frontal fascicle

ILF Inferior longitudinal fascicle

IR-SPGR Inversion recovery prepared spoiled gradient
recalled echo

IQR Interquartile range

LH Left hemisphere

LMN Lower motor neuron

ML Machine learning

MND Motor neuron disease

MNI152  Montreal Neurological Institute 152 standard
space

NIV Non-invasive ventilation

PEG Percutaneous endoscopic gastrostomy

PLS Primary lateral sclerosis

PT Physiotherapy

RD Radial diffusivity

RH Right hemisphere

RIG Radiologically inserted gastrostomy

ROI Region of interest

rs-fMRI  Resting-state functional MRI

SC Structural connectivity

SD Standard deviation

SE-EPI Spin-echo echo-planar imaging

SLF Superior longitudinal fascicle

T Tesla

Tlw T1-weighted imaging

TE Echo time

TI Inversion time

TR Repetition time

UF Uncinate fascicle

UMN Upper motor neuron

VR Voxel resolution

WM White matter

Introduction

While frontotemporal dysfunction is a well-recognised clini-
cal facet of ALS [1-4], cognitive manifestations of PLS are
less well characterised. PLS is traditionally conceptualised
as a “pure” upper motor neuron disorder, a view increasingly
challenged by case series describing cognitive deficits [5, 6].
Larger PLS studies have recently highlighted that comorbid
cognitive and behavioural manifestations are not uncom-
mon [5-7], and more recently, a number of imaging stud-
ies have captured extensive frontotemporal, cerebellar and
subcortical grey matter (GM) involvement [8, 9]. The most
commonly described neuropsychological alterations in PLS
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include executive dysfunction, apathy, language deficits and
deficits in social cognition [5-7], albeit specific domains are
seldom evaluated in detail in dedicated prospective studies.

In light of the relative paucity of post-mortem stud-
ies [10], most of which focus on spinal and motor cortex
involvement, computational neuroimaging is the most com-
monly utilised tool to characterise patterns of neurodegener-
ation in PLS [11]. Early PLS studies have primarily centred
on the evaluation of corpus callosum, corticospinal tract and
primary motor cortex pathology [12-14] and later studies
have increasingly characterised intra- and inter-hemispheric
disconnection [15-18]. Pre- and supplementary motor cor-
tex involvement and brainstem alterations [17, 19] have
been gradually characterised, and the most recent studies
have revealed selective thalamic and amygdalar involve-
ment as well [20-22]. Thalamic nuclei relay a number of
corticocortical and corticobasal networks [23] mediating
specific cognitive processes. The preferential degeneration
of thalamic and amygdalar nuclei are likely contributors
to the widespread neurocognitive changes observed clini-
cally. While the hallmark clinical manifestations of PLS are
progressive spasticity and pseudobulbar affect, recent stud-
ies also confirmed considerable cerebellar degeneration in
PLS [8]. Albeit the physiological role of the cerebellum is
typically merely associated with coordination and balance,
its physiological role in mediating cognitive, emotional
and behavioural processes and vulnerability in MNDs is
increasingly recognised [8, 24]. Pseudobulbar affect is one
of the commonest non-motor manifestation of PLS which
is traditionally linked to cortico-medullary disconnection,
but cerebellar and serotonergic factors are also thought to
contribute [14, 25-28].

In ALS, genotype-associated cognitive and behavioural
profiles are well recognised especially in association with
C9orf72 [29-32]. The high incidence and distinctive sub-
types of cognitive phenotypes in ALS led to the development
of classification schemes [33]. Disease-specific screening
instruments [34-36] have been developed and validated to
screen for neuropsychological (NP) deficits in the most com-
monly affected domains in ALS to trigger comprehensive
NP assessments if required. More importantly, the survival
and management implications of comorbid dementia have
been extensively studied in ALS, but not in PLS. In ALS,
there is a high incidence of comorbid cognitive and behav-
ioural deficits [6, 37] and apathy [36] which are known to
impact on adherence to medications, engagement with sup-
portive interventions (PT/NIV/PEG), fall prevention strate-
gies, participation in clinical trials and survival [38, 39].
Despite the compelling practical relevance of comorbid neu-
ropsychological deficits, patients with PLS are not routinely
screened for cognitive deficits and the radiological substrate
of cognitive change in PLS remains poorly characterised.
Our objective therefore is the systematic evaluation of the
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integrity of language-associated cortical regions, relevant
white matter (WM) tracts and the connectivity of relevant
circuits. Accordingly, a prospective multimodal neuroimag-
ing study has been carried out with 3D T1-weighted (T1w),
diffusivity and functional MRI data and detailed clinical and
genetic profiling.

Methods

Ethics approval

In accordance with the Ethics Approval of this research
project by Beaumont Hospital, Dublin, all participants gave
informed consent.

Participants

A total of 151 participants, 40 patients with PLS and 111
healthy controls (HC), were enrolled in this study. The
demographic and clinical profiles of the two cohorts are

summarised in Table 1. Age, sex, approximate date of symp-
tom onset, symptom onset to scan interval, handedness,

Table 1 The demographic and clinical profile of the study population

education, smoking history, BMI and site of disease onset
were systematically recorded on the day of the scan, and the
following instruments were also administered to all patients
with PLS: (1) the ALS functional rating scale (ALSFRS-
r), the Edinburgh Cognitive and Behavioural ALS Screen
(ECAS) [35], the Frontal Systems Behavior Scale (FrSBe),
the Hospital Anxiety and Depression Scale (HADS) and
the Emotional Lability Questionnaire (ELQ) [40] were uni-
formly administered. Healthy controls were unrelated to
patients with PLS and had no family history of neurological
disease. All subjects with PLS had “definite” PLS according
to the new diagnostic criteria [41]. Participants with comor-
bid neuroinflammatory, neurovascular or psychiatric condi-
tions and subjects who could not tolerate MRI scanning due
to claustrophobia were excluded. Subjects with incidental
radiological findings, such as hydrocephalus, meningiomas
and previous strokes, were also excluded.

Genetics
Participating patients with PLS underwent whole exome

sequencing, as described previously [6]. Thirty-three
ALS-associated genetic variants based on the ALS online

PLS patients HC t test [W]™*/Chi-square [C2]T*+
Total number of subjects (missing data sets 40 (0/0/11) 111 (0/2/0) n.a
for CT/DWI*/rs-fMRI)
Age [y, mean +SD] 61.95+10.21 59.36 +10.66 W: #(71.20)=1.36, p=0.18
Sex, F/M 15/25 57156 C2: X*(1, N=141)=1.50, p=0.22
Handedness, R/L 36/4 106/7 C2: XX(1, N=141)=0.20, p=0.66
Years of education [y, mean+ SD] 12.38+3.32 14.68 +£3.52 W: #(72.29)=-3.72, p<0.001*
Symptom duration [y, mean +SD] 92+5.7
ELQ score—mean SD 12.34 +14.91
ALSFRS-r—mean+ SD 33.88+5.05
ECAS total abnormal scores n (%) 9 (22.5%)
ALS specific 9 (22.5%)
ALS non-specific 6 (15%)
Language 11 (27.5%)
Verbal fluency 9 (22.5%)
HADS mean (SD) total 8.1(5.6)
HADS mean (SD) anxiety 5.0 (4.1)
HADS mean (SD) depression 322.4)

ELQ laughing
ELQ crying

5.6 (7.4) abnormal: 31%
4.0 (6.2) abnormal: 25%

ALSFRS amyotrophic lateral sclerosis functional rating scale, CT cortical thickness, DWI diffusion-weighted imaging, ECAS Edinburgh Cogni-
tive and Behavioural ALS Screen, ELQ Emotional Lability Questionnaire, F female, HADS Hospital Anxiety and Depression Scale, HC healthy
controls, L left-handed, M male, PLS primary lateral sclerosis, R right-handed, rs-fMRI resting-state functional magnetic resonance imaging, SD

standard deviation, y years

+*Welch two-sample ¢ tests were performed to test differences of age and years of education between all PLS vs. HC,

*+*+Chi-square tests were performed to test differences of sex and handedness frequencies between all PLS vs. HC

*Significant at an alpha level of p <0.05
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database [42] and 70 hereditary spastic paraplegia (HSP)-
associated genetic variants [43] were considered. Patients
were also screened for hexanucleotide repeat expansion
(HRE) in C9orf72 using repeat-primed polymerase chain
reaction (PCR) as previously described [44].

Neuroimaging

A 3 Tesla Philips Achieva platform was used for MR data
acquisition. FLAIR images were acquired to identify inci-
dental neurovascular or neuroinflammatory changes. FLAIR
images were acquired axially with an Inversion Recovery
Turbo Spin Echo (IR-TSE) sequence: TR/TE=11,000/125
ms, TT=2800 ms, FOV =230 % 183 X 150 mm and spatial
resolution =0.65 X 0.87 x4 mm. Three input raw-MR data
sets were interrogated quantitatively in this study: 3D struc-
tural T1-weighted (T1w) images, diffusion-weighted images
(DWI) and resting-state functional MRI (rs-fMRI). A 3D
Inversion Recovery prepared Spoiled Gradient Recalled
echo (IR-SPGR) sequence was used to acquire T1-weighted
data with a field of view (FOV) of 256 X256 X 160 mm, 160
sagittal slices with no interslice gap, flip angle (FA)=28°,
voxel resolution (VR)=1 mm isotropic, SENSE factor=1.5,
TR/TE=28.5/3.9 ms and TI=1060 ms. A spin-echo echo-
planar imaging (SE-EPI) pulse sequence with a 32-direc-
tion Stejskal-Tanner diffusion encoding scheme was used
to acquire DWI data with a FOV =245 X245 % 150 mm,
60 axial slices with no interslice gaps, FA=90°, VR=2.5
mm isotropic, SENSE factor=2.5, TR/TE=7639/59 ms,
dynamic stabilisation and spectral presaturation with inver-
sion recovery (SPIR) fat suppression. An echo-planar imag-
ing (EPI) sequence was implemented to evaluate fluctuations
of the blood-oxygen-level-dependent (BOLD) signal at rest
with eyes closed: a total of 220 volumes were acquired with
a FOV =233x%x233x 120 mm, 30 axial slices with no inter-
slice gap, FA=90°, VR=2.875%2.875 X4 mm isotropic,
SENSE factor=2.5 and TR/TE =2000/35 ms.

Cortical thickness estimation of Broca’s
and Wernicke’s areas

3D T1w structural data were used for cortical thickness (CT)
estimations in Broca’s and Wernicke’s areas. FreeSurfer’s
[45] “recon_all” pipeline was utilised for pre-processing
including bias corrections, brain extraction, normalisation
and generation of 2D cortical surface representations [46,
47]. Resulting surface data were subsequently converted
into “CIFTT” file format with the help of Ciftify [48] which
relies on Workbench [49] tools. Data were also input into the
standard “fsl_anat” pipeline of FMRIB s Software Library
(FSL) [50] which encompasses bias correction, brain
extraction and non-linear registration to the MNI152 2mm
standard space. Resulting transformation matrices were
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subsequently used for image co-registration of DWI and
functional data. A region-of-interest (ROI) label for “Broca’s
area” was generated by merging the “pars opercularis” and
“pars triangularis” labels of the Desikan—Killiany (DK) atlas
[51]. Wernicke’s area was approximated based on the “banks
of the superior temporal sulcus” of the DK atlas—incorpo-
rating parts of the superior temporal gyrus and posterior
middle temporal gyrus [52]. While language functions are
physiologically lateralised to the left hemisphere in right-
handed people and in the majority of left-handed people [53,
54], metrics were also retrieved from the right hemisphere
for further analyses.

Tractography of language-associated white matter
tracts

Raw diffusion-weighted (DWI) data were used to generate
tract-wise diffusivity values as a proxy of structural con-
nectivity (SC). Pre-processing took place in MRtrix3 [55],
including noise [56] and Gibb’s Ringing artifacts removal
[57], as well as motion, eddy current [58] and bias field cor-
rections [59]. The integrity of the six most relevant language
fibre tracts was appraised in each hemisphere: the arcuate
fascicle (AF), inferior occipito-frontal fascicle (IFO), infe-
rior longitudinal fascicle (ILF), superior longitudinal fasci-
cle (SLF), uncinate fascicle (UF) [60, 61] as well as the fron-
tal aslant tract (FAT) connecting the supplementary motor
region/lateral superior frontal gyrus with the inferior frontal
gyrus [62] (Fig. 1). Intraoperative brain stimulation and pre-
vious tractography studies have consistently highlighted the
role of FAT in a variety of speech processes and language
functions including speech initiation, sentence generation,
verbal fluency, lexical decisions, orofacial movement coor-
dination and speech inhibition [62] The TractSeg pipeline
[63] was implemented to dissect AF, IFO, ILF, SLF and UF
which relies on a neural network approach for the accurate
segmentation of individual DWI data sets. TractSeg out-
puts three separate fibre bundles for SLF (SLF I, SLF II and
SLF III) which were merged into a single SLF map. To esti-
mate fibre orientation distribution (fODF) in each voxel and
peaks of the spherical harmonic function, the constrained
spherical deconvolution (CSD) approach of MRtrix3 [55]
was used. The main advantage of CSD stems from its accu-
racy in crossing fibres regions [64—66]. Output fODFs were
normalised [67] and spherical harmonic peaks retrieved to
be fed into TractSeg. For frontal aslant tract segmentation,
the relevant labels of the Glasser atlas [68] were utilised
as end-ROIs [62]. The labels and DW images were aligned
to the high-resolution T1w data and tractograms calculated
between each pair of ROIs using a probabilistic algorithm
to generate 5000 streamlines per tract, using the analogue
options and parameters for estimating fODF and tractogra-
phy as for TractSeg. The 12 tractograms were subsequently
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AF

FAT

IFO

ILF

SLF
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Fig. 1 Tractography of six language-associated tracts: arcuate fasci-
cle (AF), frontal aslant tract (FAT), inferior occipito-frontal fascicle
(IFO), inferior longitudinal fascicle (ILF), superior longitudinal fasci-
cle (SLF) and uncinate fascicle (UF)

mapped onto track-weighted images implementing the track
density imaging (TDI) method [69], where each streamline
contributes a value of unity to the final track-weighted out-
put map. These maps were binarised using a threshold of at
minimum two streamlines per voxel. With the resulting bina-
rised maps, the mean radial diffusivity (RD) and fractional
anisotropy (FA) of each tract were estimated.

Functional connectivity between Broca’s
and Wernicke’s areas and along the frontal aslant
tract

Functional connectivity (FC) was estimated between Broca’s
and Wernicke’s areas as well as between the supplementary
motor region/lateral superior frontal gyrus and the infe-
rior frontal gyrus. Rs-fMRI data were pre-processed using
FSL’s FEAT pipeline which includes brain extraction, inten-
sity normalisation and slice time correction. Head-motion
artifacts were corrected using FSL’s ICA-based Automatic

Removal Of Motion Artifacts (ICA- AROMA) [70]. Con-
founding effects of WM and cerebrospinal fluid (CSF) were
regressed out. The resulting pre-processed functional images
were transformed into MNI152 2mm standard space for
subsequent group comparisons: First, linear co-registration
of the native high-resolution data was performed using
6 degrees of freedom (DOFs), followed by non-linearly
warping into standard space using 12 DOFs. FC was cal-
culated in Matlab R2021b (The Mathworks, Natick, USA),
using the CoOSMoMVPA [71] and FieldTrip [72] toolboxes
and defined as Fisher z-transformed Pearson’s correlation
between the time courses of the ROIs.

Statistical modelling

RStudio (R version 4.2.2) was used for statistical infer-
ences. Differences in means of age and education between
patients (aggregating across subgroups) and HC were exam-
ined using Welch two-sample 7 tests. Sex and handedness
rations were compared using Chi-square testing. To test
differences in neuroimaging metrics between patients and
HC, a one-way analysis of variance (ANOVA) omnibus test
was implemented, correcting for the confounding effects of
age, sex, handedness and years of education. To account for
multiple comparisons, for CT and FC, we considered p val-
ues below 0.05/2=0.025 as significant (correcting for two
ROIs); for WM tractography, we considered p values below
0.05/6 =0.008 as significant, correcting for the number of
tracts evaluated (6).

Data availability

Statistical outputs and additional data processing details
can be requested from the corresponding author. Individ-
ual patient clinical and neuroimaging data cannot be made
available due to institutional regulations and departmental
policies.

Results
Subjects

In total, data from 40 PLS patients and 111 HC were evalu-
ated. While complete structural, diffusivity and fMRI data
were available from the majority of subjects, 11 patients
with PLS had no rs-fMRI data and 2 healthy controls out
of the 111 healthy subjects had no diffusion-weighted data
available (Table 1). Welch two-sample t-testing indicated
adequate matching for age [#(71.20)=1.36, p=0.18]; how-
ever, PLS patients had significantly fewer years of education
[#(72.29)=— 3.72, p<0.001]. As indicated above, educa-
tion was included as a covariate in our statistical models.
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Chi-square testing revealed no significant differences in
sex distributions [X2(1, N=141)=1.50, p=0.22] and dis-
tributions of handedness [X2(1, N=141)=0.20, p=0.66]
between the study groups. Patients with PLS tested nega-
tive for GGGGCC hexanucleotide expansions in C9orf72
and the panel of HSP and ALS-associated genetic variants.

Cortical thickness

To assess cortical thickness differences of language-asso-
ciated regions between PLS and HC, we used analysis of
variance (ANOVA), corrected for age, sex, handedness and
years of education. CT differences were evaluated in two
regions of interest (ROIs), Broca’s and Wernicke’s areas.
To correct for multiple comparisons with regard to the
two ROIs, we adjusted the alpha level p <0.05/2=0.025.
Results are illustrated in Fig. 2, and the details of the sta-
tistical comparisons are presented in Table 2. Significantly
reduced cortical thickness was detected in Broca’s area in
patients with PLS compared to controls [F(1, 147)=49.11,
p<0.001]. The thickness of the right-hemispheric equivalent
of Broca’s area was also significantly lower in PLS [F(1,
147)=53.46, p <0.001]. Wernicke’s area also exhibited
significantly lower CT in PLS compared to controls [F(1,
147)=36.13, p<0.001], as well as in its right-hemispheric
equivalent [F(1, 147)=3.80, p <0.001]. These findings sug-
gest that both Broca’s and Wernicke’s areas are affected in
PLS, which is, however, not specific to the left hemisphere
since similar atrophy was also detected in the equivalent
brain regions in the right hemisphere.

Fig.2 Cortical thickness dif-
ferences between patients with
PLS (PLS) and healthy controls
(HC). *Statistically significant
group differences

Broca’s area

Wernicke’s area

HC
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White matter microstructure alterations

To evaluate differences in white matter (WM) integrity
in language-associated tracts between PLS and HC, we
used ANOVA, correcting for age, sex, handedness and
years of education. We contrasted differences in radial
diffusivity (RD) and fractional anisotropy (FA) in 6 lan-
guage-associated tracts on each hemisphere: (1) arcuate
fascicle (AF), (2) frontal aslant tract (FAT), (3) inferior
occipito-frontal fascicle (IFO), (4) inferior longitudinal
fascicle (ILF), (5) superior longitudinal fascicle (SLF) and
(6) uncinate fascicle (UF). To correct for multiple com-
parisons investigating these six tracts, we adjusted the
alpha level p <0.05/6 =0.008. We illustrate the results
of these comparisons in Fig. 3 and provide statistical
details in Table 2. In the left hemisphere, significantly
lower FA [F(1, 143)=14.06, p <0.001] and higher RD
[F(1,143)=28.90, p<0.001] was identified in the aslant
tract in patients with PLS. Additionally higher RD was
detected in the AF [F(1, 147)=19.85, p<0.001], and
the SLF [F(1, 147)=19.10, p <0.001]. In the right hemi-
sphere, reduced FA was identified in the frontal aslant tract
[F(1, 143)=16.20, p<0.001] and SLF [F(1, 147)=10.23,
p=0.002] in patients with PLS compared to controls.
Additionally, higher RD was detected in all investigated
tracts with the exception of the SLF [F(1, 147)=2.58,
p=0.11]. These findings indicate that language-associated
tracts, the frontal aslant tract in particular, are affected in
PLS in both hemispheres, and RD is more sensitive than
FA in detecting white matter integrity alterations.

Right Hemisphere

B8 He 35
B rLs

PLS HC PLS
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Tab]e 2 .Statistical df:tails of Neuroimaging metric General linear model, testing main effect “neuroimaging metric”
radiological comparisons
Left hemisphere Right hemisphere
Sum square F value p value Sum square F value p value
Cortical thickness
Broca’s area 2.066 49.11 <0.001* 2.66 53.46 <0.001*
Wernicke’s area 2.644 36.13 <0.001* 3.80 43.41 <0.001*
Fractional anisotropy
Arcuate fascicle 1.48e—3 4.89 0.03 4.90e—4 0.85 0.36
Aslant tract 1.68e—2 14.06 <0.001* 1.47e-2 16.20 <0.001*
Inferior occipito-frontal fascicle 9.00e—5 0.13 0.72 1.80e—4 0.34 0.56
Inferior longitudinal fascicle 1.00e-5 0.01 0.92 4.40e—4 0.47 0.49
Superior longitudinal fascicle 1.87e-3 431 0.04 6.78e-3 10.23 0.002%*
Uncinate fascicle 1.50e—4 0.17 0.68 2.50e—4 0.46 0.50
Radial diffusivity
Arcuate fascicle 1.40e—-8 19.85 <0.001*% 6.92e-9 8.87 0.003*
Aslant tract 1.39¢e-7 28.90 <0.001% 1.44e-7 33.57 <0.001*
Inferior occipito-frontal fascicle 1.08e-8 6.87 0.01 2.71e-8 19.84 <0.001*
Inferior longitudinal fascicle 4.51e-9 5.20 0.024 1.59¢-8 12.03 <0.001*
Superior longitudinal fascicle 2.03e-8 19.11 <0.001* 4.87¢-9 2.58 0.11
Uncinate fascicle 5.84e—9 4.83 0.023 1.19e-8 11.88 <0.001*
Functional connectivity
Broca’s—Wernicke’s areas 0.003 0.07 0.79 0.07 1.72 0.19
Aslant tract: source-to-target 0.33 8.27 0.005%* 0.306 6.22 0.014*

Fig. 3 Fractional anisotropy
(FA) and radial diffusivity (RD)
differences between patients
with PLS (PLS) and healthy
controls (HC) in the arcuate
fascicle (AF), frontal aslant
tract (FAT), inferior occipito-
frontal fascicle (IFO), inferior
longitudinal fascicle (ILF),
superior longitudinal fascicle
(SLF) and uncinate fascicle
(UF) *Statistically significant
group differences

Radiological differences between individuals with PLS patients and healthy controls

*Bold font indicate significant p values at the corrected alpha levels (for CT and FC: p <0.05/2=0.025,
correcting for two ROIs for WM analyses: p <0.05/6 =0.008, correcting for six tracts)

ANOVA analysis of variance, CT cortical thickness, FC functional connectivity, PLS primary lateral sclero-

sis, ROI region of interest, WM w
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Functional connectivity

Functional connectivity (FC) differences in language-
associated circuits between PLS and HC were explored
using ANOVA, correcting for age, sex, handedness and
years of education. Differences in partial correlations
of BOLD time courses were evaluated between two
ROI pairs in each hemisphere: (1) between Broca’s and
Wernicke’s areas and their equivalents in the right hemi-
sphere, and (2) between supplementary motor area/lat-
eral superior frontal gyrus and the inferior frontal gyrus,
i.e. along the frontal aslant tract. Please note that the
confounding effects of WM and CSF time courses were
regressed out. To correct for multiple comparisons inves-
tigating the two circuits, the alpha level was adjusted to
p <0.05/2=0.025. The outcomes of the comparisons are
illustrated in Fig. 4, and statistical details are provided in
Table 2. Reduced functional connectivity was detected
along the frontal aslant tract in patients with PLS both
in the left [F(1, 134)=8.27, p=10.005] and right [F(1,
134)=6.22, p=0.014] hemispheres. Functional con-
nectivity between Broca’s and Wernicke’s areas was not
reduced in the left [F(1, 134)=0.07, p=0.789] or right
hemispheres [F(1, 134)=1.72, p=0.192]. These findings
demonstrate functional disconnection between the sup-
plementary motor region and the inferior frontal gyrus
along the aslant tract in both hemispheres.

Fig.4 Functional connectivity
differences between patients
with PLS and healthy controls
(HC) *Statistically significant
group differences
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Discussion

Our data indicate that brain regions mediating a variety
of language functions under physiological circumstances
are heavily affected in PLS. We detected not only cortical
thickness reductions in both Wernicke’s and Broca’s areas
but also structural connectivity changes in the frontal aslant
tract, arcuate and superior longitudinal fascicles of the left
hemisphere. Furthermore, decreased functional connectivity
was identified between the supplementary motor region and
the inferior frontal gyrus.

Our study benefits from a multimodal, structural, func-
tional approach and our findings based on raw DWI and rs-
fMRI data are consistent. For example, we detect FA reduc-
tions and increased RD in the frontal aslant tract (Fig. 3)
suggestive of impaired structural connectivity and we also
detect decreased functional connectivity between the supple-
mentary motor region and the inferior frontal gyrus (Fig. 4)
suggestive of impaired functional integrity along the aslant
tract. The appraisal of multiple diffusivity metrics, instead
of just assessing FA, is also beneficial, as radial diffusivity
alterations capture the involvement of more tracts than by
assessing FA alone (Fig. 3). The impact of sexual dimor-
phism and education on brain morphology is well recognised
both in healthy individuals and ALS [73, 74]; therefore, sex
and education have been incorporated in all of our statisti-
cal models. Interestingly, the majority of imaging changes
are relatively symmetric and cortical thickness alterations,
and structural and functional connectivity changes were also

Right Hemisphere

B8 He
B rLs
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noted in the right hemisphere. Broca’s area atrophy in MNDs
have previously been associated with hexanucleotide expan-
sions in C9orf72 [75], and also noted in PLS [6]. In this
study we demonstrate Broca’s area atrophy in PLS patients
who tested negative for C9orf72 HREs and also identify
Wernicke’s area cortical thickness reductions. While PLS
is not associated with frank semantic deficits clinically, the
radiological changes underline the rationale for thorough
neuropsychological testing beyond cursory screening for
cognitive deficits. In view of that caveats of pursuing direct
clinico-radiological correlations [76], we have intentionally
only performed descriptive radiological analyses. Neuropsy-
chological deficits in MNDs should not be linked to a single
grey or white matter metric as these typically stem from
the dysfunction of multi-synaptic networks [23] including
cortical, subcortical and white matter components [77, 78].
While our data demonstrate widespread frontotemporal
change and the involvement of long association fibres, the
exact chronology of motor and extra-motor involvement
is not entirely clear. The majority of participants have a
relatively long symptom duration; therefore, it remains to
be established if frontotemporal change in PLS is a late-
stage secondary phenomenon or if it preceded motor cortex
involvement. The post-mortem literature of PLS with regard
to extra-motor involvement is relatively scarce. The few lon-
gitudinal imaging studies in PLS also primarily focus on
motor connectome degeneration [17, 19, 79], but there is
imaging evidence of relatively early and progressive fronto-
temporal involvement in PLS [11-13]. Interestingly, studies
of “probable” PLS, i.e. cohorts with a symptom duration less
than 4 years, do not typically capture frontotemporal change,
but identify primary motor cortex changes, suggesting that
motor cortex and corticospinal tract degeneration likely pre-
cedes frontotemporal disease burden expansion [80, 81].
There are a number of misconceptions around PLS, one
of which is that it is a relatively benign clinical entity, which
is only true in comparison to ALS [82]. While PLS carries a
better prognosis than ALS [83, 84], it does exhibit a relent-
lessly progressive clinical and radiological progression.
Another misconception around PLS is that it is a clinically
homogeneous condition with stereotyped clinical symptoms
and clinical trajectory. The findings of this study highlight
that despite unifying clinical symptomatology (spasticity,
gait impairment, pseudobulbar affect), patients with PLS
may exhibit varying degree of cognitive or behavioural
change and that PLS may be more heterogeneous clinically
than previously thought. Disease heterogeneity in univer-
sally recognised in ALS and the prognostic and survival
implications of cognitive change in ALS have been exten-
sively studied [39]. In general, prognostic indicators and pre-
dictive markers have been extensively studied in ALS and
much less so in PLS [85-88]. The recognition of clinical het-
erogeneity in ALS inspired cluster analyses of large data sets

[89-91] to identify unique phenotypes with distinctive radi-
ological, clinical and genetic profiles. Furthermore, given
the relatively high incidence of cognitive change in ALS,
sub-phenotypes have been defined based on the impair-
ment in specific domains [33]. In PLS, terminology such
as “PLS-plus” or “PLS-FTD” has been previously coined,
but no uniformly utilised or defined based on psychometric
measures. The appraisal of extra-motor involvement and
detection of cognitive change is not merely an academic
pursuit. The practical implications of cognitive change have
been widely studied in ALS, and there is ample evidence
that frontotemporal dysfunction impacts on compliance with
assistive devices [92], adherences to therapies, may impact
on caregiver burden and influence end-of-life decisions. It
is also conceivable that marked frontotemporal change has
ramifications for clinical trial participation. Clinical experi-
ence suggests that logopenic and agrammatic speech may be
mistaken for apathy or depression and pseudobulbar affect
mistaken for disinhibition [25]. Accordingly, raising aware-
ness of language deficits may be useful for early screening
for these manifestations, triggering expert assessments and
interventions by speech pathologists or speech and language
therapists.

From a radiological perspective, extra-motor disease bur-
den in ALS is very well characterised [93—-100], including
presymptomatic extra-motor changes [1, 31, 101], and the
identified anatomical patterns are often linked to the dis-
tribution of pathological TDP-43 [102, 103]. Radiological
descriptions in ALS complement the wealth of neuropsy-
chology studies, which typically detect executive dysfunc-
tion, language deficits, memory impairment, disinhibition,
apathy and deficits in social cognition [34, 36, 39, 100, 104,
105]. Study designs in ALS are likely transferable to future
PLS studies and there are obvious methodological lessons
from existing ALS papers, such as the nuanced characterisa-
tion of cognitive change, assessment of longitudinal profiles
and the study of the practical implications of frontotemporal
dysfunction with regard to survival, decision making and
adherence to MDT interventions.

ALS and PLS share a number of core clinical and radio-
logical features, including corticospinal tract involvement,
corpus callosum degeneration, brainstem and cerebellar
atrophy [8, 106]. The reliable distinction of early-stage
upper motor neuron predominant ALS from PLS on clini-
cal grounds can be challenging, hence the minimum symp-
tom duration criterion of subsequent diagnostic criteria for
PLS. Given their overlapping radiological signatures [83],
machine learning frameworks had difficulty reliably distin-
guishing ALS from PLS based on cerebral MRI data alone
[107]. While individual subject classification into diagnostic,
phenotypic or prognostic categories is a relatively new field
of MND research, a multitude of statistical approaches have
been successfully trialled to date [78, 108, 109]. From a
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methodological perspective, imaging studies in PLS primar-
ily rely on structural and diffusivity data [11, 18], sometimes
rs-fMRI is incorporated [15, 16] in the protocols, but unlike
in ALS, paradigm-based or motor imagery fMRI is seldom
utilised [110, 111]. MR spectroscopy is also underutilised in
PLS, despite its potential to reveal early metabolic changes,
possibly preceding structural degeneration [112].

This study is not without limitations. Only cross-sectional
analyses have been conducted; therefore, the longitudinal
evolution of pathological change in language-associated
areas cannot be inferred from these data; the chronology
of motor and language involvement also remains to be
established. Another shortcoming of this study is that no
post-mortem data are available for the anatomical align-
ment of histopathology and imaging data which would be
an important cross-validation step. Notwithstanding these
limitations, our clinical and imaging data demonstrate that
pathology in PLS is not confined to motor regions and that
multiple language-associated brain regions are significantly
affected. Unlike in ALS, where the impact of cognitive defi-
cits has been widely studied, the practical ramifications of
neuropsychological deficits in PLS remain to be evaluated,
so that multidisciplinary care can be tailored to individual
patient profiles. The traditional view of PLS as a relatively
“benign”, clinically homogeneous, “motor-system only”
disease needs to be urgently challenged and frontotemporal
disease-burden needs to be comprehensively characterised
both in vivo and post-mortem.

Conclusions

PLS should no longer be regarded as pure UMN disorder
with the exclusive involvement of the primary motor cortex
and the descending corticospinal tracts. Our data add to the
accruing clinical and neuroimaging evidence that PLS is
a multi-system disorder with considerable frontotemporal,
subcortical and cerebellar involvement.
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