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Abstract
Background  Primary lateral sclerosis (PLS) is traditionally regarded as a pure upper motor neuron disorder, but recent cases 
series have highlighted cognitive deficits in executive and language domains.
Methods  A single-centre, prospective neuroimaging study was conducted with comprehensive clinical and genetic profiling. 
The structural and functional integrity of language-associated brain regions and networks were systematically evaluated in 
40 patients with PLS in comparison to 111 healthy controls. The structural integrity of the arcuate fascicle, frontal aslant 
tract, inferior occipito-frontal fascicle, inferior longitudinal fascicle, superior longitudinal fascicle and uncinate fascicle was 
evaluated. Functional connectivity between the supplementary motor region and the inferior frontal gyrus and connectiv-
ity between Wernicke’s and Broca’s areas was also assessed.
Results  Cortical thickness reductions were observed in both Wernicke’s and Broca’s areas. Fractional anisotropy reduction 
was noted in the aslant tract and increased radical diffusivity (RD) identified in the aslant tract, arcuate fascicle and superior 
longitudinal fascicle in the left hemisphere. Functional connectivity was reduced along the aslant track, i.e. between the 
supplementary motor region and the inferior frontal gyrus, but unaffected between Wernicke’s and Broca’s areas. Cortical 
thickness alterations, structural and functional connectivity changes were also noted in the right hemisphere.
Conclusions  Disease-burden in PLS is not confined to motor regions, but there is also a marked involvement of language-
associated tracts, networks and cortical regions. Given the considerably longer survival in PLS compared to ALS, the impact 
of language impairment on the management of PLS needs to be carefully considered.
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HADS	� Hospital Anxiety and Depression Scale
HC	� Healthy controls
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IR-SPGR	� Inversion recovery prepared spoiled gradient 

recalled echo
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LH	� Left hemisphere
LMN	� Lower motor neuron
ML	� Machine learning
MND	� Motor neuron disease
MNI152	� Montreal Neurological Institute 152 standard 

space
NIV	� Non-invasive ventilation
PEG	� Percutaneous endoscopic gastrostomy
PLS	� Primary lateral sclerosis
PT	� Physiotherapy
RD	� Radial diffusivity
RH	� Right hemisphere
RIG	� Radiologically inserted gastrostomy
ROI	� Region of interest
rs-fMRI	� Resting-state functional MRI
SC	� Structural connectivity
SD	� Standard deviation
SE-EPI	� Spin-echo echo-planar imaging
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T1w	� T1-weighted imaging
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VR	� Voxel resolution
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Introduction

While frontotemporal dysfunction is a well-recognised clini-
cal facet of ALS [1–4], cognitive manifestations of PLS are 
less well characterised. PLS is traditionally conceptualised 
as a “pure” upper motor neuron disorder, a view increasingly 
challenged by case series describing cognitive deficits [5, 6]. 
Larger PLS studies have recently highlighted that comorbid 
cognitive and behavioural manifestations are not uncom-
mon [5–7], and more recently, a number of imaging stud-
ies have captured extensive frontotemporal, cerebellar and 
subcortical grey matter (GM) involvement [8, 9]. The most 
commonly described neuropsychological alterations in PLS 

include executive dysfunction, apathy, language deficits and 
deficits in social cognition [5–7], albeit specific domains are 
seldom evaluated in detail in dedicated prospective studies.

In light of the relative paucity of post-mortem stud-
ies [10], most of which focus on spinal and motor cortex 
involvement, computational neuroimaging is the most com-
monly utilised tool to characterise patterns of neurodegener-
ation in PLS [11]. Early PLS studies have primarily centred 
on the evaluation of corpus callosum, corticospinal tract and 
primary motor cortex pathology [12–14] and later studies 
have increasingly characterised intra- and inter-hemispheric 
disconnection [15–18]. Pre- and supplementary motor cor-
tex involvement and brainstem alterations [17, 19] have 
been gradually characterised, and the most recent studies 
have revealed selective thalamic and amygdalar involve-
ment as well [20–22]. Thalamic nuclei relay a number of 
corticocortical and corticobasal networks [23] mediating 
specific cognitive processes. The preferential degeneration 
of thalamic and amygdalar nuclei are likely contributors 
to the widespread neurocognitive changes observed clini-
cally. While the hallmark clinical manifestations of PLS are 
progressive spasticity and pseudobulbar affect, recent stud-
ies also confirmed considerable cerebellar degeneration in 
PLS [8]. Albeit the physiological role of the cerebellum is 
typically merely associated with coordination and balance, 
its physiological role in mediating cognitive, emotional 
and behavioural processes and vulnerability in MNDs is 
increasingly recognised [8, 24]. Pseudobulbar affect is one 
of the commonest non-motor manifestation of PLS which 
is traditionally linked to cortico-medullary disconnection, 
but cerebellar and serotonergic factors are also thought to 
contribute [14, 25–28].

In ALS, genotype-associated cognitive and behavioural 
profiles are well recognised especially in association with 
C9orf72 [29–32]. The high incidence and distinctive sub-
types of cognitive phenotypes in ALS led to the development 
of classification schemes [33]. Disease-specific screening 
instruments [34–36] have been developed and validated to 
screen for neuropsychological (NP) deficits in the most com-
monly affected domains in ALS to trigger comprehensive 
NP assessments if required. More importantly, the survival 
and management implications of comorbid dementia have 
been extensively studied in ALS, but not in PLS. In ALS, 
there is a high incidence of comorbid cognitive and behav-
ioural deficits [6, 37] and apathy [36] which are known to 
impact on adherence to medications, engagement with sup-
portive interventions (PT/NIV/PEG), fall prevention strate-
gies, participation in clinical trials and survival [38, 39]. 
Despite the compelling practical relevance of comorbid neu-
ropsychological deficits, patients with PLS are not routinely 
screened for cognitive deficits and the radiological substrate 
of cognitive change in PLS remains poorly characterised. 
Our objective therefore is the systematic evaluation of the 
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integrity of language-associated cortical regions, relevant 
white matter (WM) tracts and the connectivity of relevant 
circuits. Accordingly, a prospective multimodal neuroimag-
ing study has been carried out with 3D T1-weighted (T1w), 
diffusivity and functional MRI data and detailed clinical and 
genetic profiling.

Methods

Ethics approval

In accordance with the Ethics Approval of this research 
project by Beaumont Hospital, Dublin, all participants gave 
informed consent.

Participants

A total of 151 participants, 40 patients with PLS and 111 
healthy controls (HC), were enrolled in this study. The 
demographic and clinical profiles of the two cohorts are 
summarised in Table 1. Age, sex, approximate date of symp-
tom onset, symptom onset to scan interval, handedness, 

education, smoking history, BMI and site of disease onset 
were systematically recorded on the day of the scan, and the 
following instruments were also administered to all patients 
with PLS: (1) the ALS functional rating scale (ALSFRS-
r), the Edinburgh Cognitive and Behavioural ALS Screen 
(ECAS) [35], the Frontal Systems Behavior Scale (FrSBe), 
the Hospital Anxiety and Depression Scale (HADS) and 
the Emotional Lability Questionnaire (ELQ) [40] were uni-
formly administered. Healthy controls were unrelated to 
patients with PLS and had no family history of neurological 
disease. All subjects with PLS had “definite” PLS according 
to the new diagnostic criteria [41]. Participants with comor-
bid neuroinflammatory, neurovascular or psychiatric condi-
tions and subjects who could not tolerate MRI scanning due 
to claustrophobia were excluded. Subjects with incidental 
radiological findings, such as hydrocephalus, meningiomas 
and previous strokes, were also excluded.

Genetics

Participating patients with PLS underwent whole exome 
sequencing, as described previously [6]. Thirty-three 
ALS-associated genetic variants based on the ALS online 

Table 1   The demographic and clinical profile of the study population

ALSFRS amyotrophic lateral sclerosis functional rating scale, CT cortical thickness, DWI diffusion-weighted imaging, ECAS Edinburgh Cogni-
tive and Behavioural ALS Screen, ELQ Emotional Lability Questionnaire, F female, HADS Hospital Anxiety and Depression Scale, HC healthy 
controls, L left-handed, M male, PLS primary lateral sclerosis, R right-handed, rs-fMRI resting-state functional magnetic resonance imaging, SD 
standard deviation, y years
++ Welch two-sample t tests were performed to test differences of age and years of education between all PLS vs. HC, 
+++ Chi-square tests were performed to test differences of sex and handedness frequencies between all PLS vs. HC
*Significant at an alpha level of p ≤ 0.05

PLS patients HC t test [W]++/Chi-square [C2]+++

Total number of subjects (missing data sets 
for CT/DWI+/rs-fMRI)

40 (0/0/11) 111 (0/2/0) n.a

Age [y, mean ± SD] 61.95 ± 10.21 59.36 ± 10.66 W: t(71.20) = 1.36, p = 0.18
Sex, F/M 15/25 57/56 C2: X2(1, N = 141) = 1.50, p = 0.22
Handedness, R/L 36/4 106/7 C2: X2(1, N = 141) = 0.20, p = 0.66
Years of education [y, mean ± SD] 12.38 ± 3.32 14.68 ± 3.52 W: t(72.29) = − 3.72, p < 0.001*
Symptom duration [y, mean ± SD] 9.2 ± 5.7
ELQ score—mean SD 12.34 ± 14.91
ALSFRS-r—mean ± SD 33.88 ± 5.05
ECAS total abnormal scores n (%) 9 (22.5%)
ALS specific 9 (22.5%)
ALS non-specific 6 (15%)
Language 11 (27.5%)
Verbal fluency 9 (22.5%)
HADS mean (SD) total 8.1 (5.6)
HADS mean (SD) anxiety 5.0 (4.1)
HADS mean (SD) depression 3.2 (2.4)
ELQ laughing 5.6 (7.4) abnormal: 31%
ELQ crying 4.0 (6.2) abnormal: 25%
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database [42] and 70 hereditary spastic paraplegia (HSP)-
associated genetic variants [43] were considered. Patients 
were also screened for hexanucleotide repeat expansion 
(HRE) in C9orf72 using repeat-primed polymerase chain 
reaction (PCR) as previously described [44].

Neuroimaging

A 3 Tesla Philips Achieva platform was used for MR data 
acquisition. FLAIR images were acquired to identify inci-
dental neurovascular or neuroinflammatory changes. FLAIR 
images were acquired axially with an Inversion Recovery 
Turbo Spin Echo (IR-TSE) sequence: TR/TE = 11,000/125 
ms, TI = 2800 ms, FOV = 230 × 183 × 150 mm and spatial 
resolution = 0.65 × 0.87 × 4 mm. Three input raw-MR data 
sets were interrogated quantitatively in this study: 3D struc-
tural T1-weighted (T1w) images, diffusion-weighted images 
(DWI) and resting-state functional MRI (rs-fMRI). A 3D 
Inversion Recovery prepared Spoiled Gradient Recalled 
echo (IR-SPGR) sequence was used to acquire T1-weighted 
data with a field of view (FOV) of 256 × 256 × 160 mm, 160 
sagittal slices with no interslice gap, flip angle (FA) = 8°, 
voxel resolution (VR) = 1 mm isotropic, SENSE factor = 1.5, 
TR/TE = 8.5/3.9 ms and TI = 1060 ms. A spin-echo echo-
planar imaging (SE-EPI) pulse sequence with a 32-direc-
tion Stejskal–Tanner diffusion encoding scheme was used 
to acquire DWI data with a FOV = 245 × 245 × 150 mm, 
60 axial slices with no interslice gaps, FA = 90°, VR = 2.5 
mm isotropic, SENSE factor = 2.5, TR/TE = 7639/59 ms, 
dynamic stabilisation and spectral presaturation with inver-
sion recovery (SPIR) fat suppression. An echo-planar imag-
ing (EPI) sequence was implemented to evaluate fluctuations 
of the blood-oxygen-level-dependent (BOLD) signal at rest 
with eyes closed: a total of 220 volumes were acquired with 
a FOV = 233 × 233 × 120 mm, 30 axial slices with no inter-
slice gap, FA = 90°, VR = 2.875 × 2.875 × 4 mm isotropic, 
SENSE factor = 2.5 and TR/TE = 2000/35 ms.

Cortical thickness estimation of Broca’s 
and Wernicke’s areas

3D T1w structural data were used for cortical thickness (CT) 
estimations in Broca’s and Wernicke’s areas. FreeSurfer’s 
[45] “recon_all” pipeline was utilised for pre-processing 
including bias corrections, brain extraction, normalisation 
and generation of 2D cortical surface representations [46, 
47]. Resulting surface data were subsequently converted 
into “CIFTI” file format with the help of Ciftify [48] which 
relies on Workbench [49] tools. Data were also input into the 
standard “fsl_anat” pipeline of FMRIB´s Software Library 
(FSL) [50] which encompasses bias correction, brain 
extraction and non-linear registration to the MNI152 2mm 
standard space. Resulting transformation matrices were 

subsequently used for image co-registration of DWI and 
functional data. A region-of-interest (ROI) label for “Broca’s 
area” was generated by merging the “pars opercularis” and 
“pars triangularis” labels of the Desikan–Killiany (DK) atlas 
[51]. Wernicke’s area was approximated based on the “banks 
of the superior temporal sulcus” of the DK atlas—incorpo-
rating parts of the superior temporal gyrus and posterior 
middle temporal gyrus [52]. While language functions are 
physiologically lateralised to the left hemisphere in right-
handed people and in the majority of left-handed people [53, 
54], metrics were also retrieved from the right hemisphere 
for further analyses.

Tractography of language‑associated white matter 
tracts

Raw diffusion-weighted (DWI) data were used to generate 
tract-wise diffusivity values as a proxy of structural con-
nectivity (SC). Pre-processing took place in MRtrix3 [55], 
including noise [56] and Gibb’s Ringing artifacts removal 
[57], as well as motion, eddy current [58] and bias field cor-
rections [59]. The integrity of the six most relevant language 
fibre tracts was appraised in each hemisphere: the arcuate 
fascicle (AF), inferior occipito-frontal fascicle (IFO), infe-
rior longitudinal fascicle (ILF), superior longitudinal fasci-
cle (SLF), uncinate fascicle (UF) [60, 61] as well as the fron-
tal aslant tract (FAT) connecting the supplementary motor 
region/lateral superior frontal gyrus with the inferior frontal 
gyrus [62] (Fig. 1). Intraoperative brain stimulation and pre-
vious tractography studies have consistently highlighted the 
role of FAT in a variety of speech processes and language 
functions including speech initiation, sentence generation, 
verbal fluency, lexical decisions, orofacial movement coor-
dination and speech inhibition [62] The TractSeg pipeline 
[63] was implemented to dissect AF, IFO, ILF, SLF and UF 
which relies on a neural network approach for the accurate 
segmentation of individual DWI data sets. TractSeg out-
puts three separate fibre bundles for SLF (SLF I, SLF II and 
SLF III) which were merged into a single SLF map. To esti-
mate fibre orientation distribution (fODF) in each voxel and 
peaks of the spherical harmonic function, the constrained 
spherical deconvolution (CSD) approach of MRtrix3 [55] 
was used. The main advantage of CSD stems from its accu-
racy in crossing fibres regions [64–66]. Output fODFs were 
normalised [67] and spherical harmonic peaks retrieved to 
be fed into TractSeg. For frontal aslant tract segmentation, 
the relevant labels of the Glasser atlas [68] were utilised 
as end-ROIs [62]. The labels and DW images were aligned 
to the high-resolution T1w data and tractograms calculated 
between each pair of ROIs using a probabilistic algorithm 
to generate 5000 streamlines per tract, using the analogue 
options and parameters for estimating fODF and tractogra-
phy as for TractSeg. The 12 tractograms were subsequently 
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mapped onto track-weighted images implementing the track 
density imaging (TDI) method [69], where each streamline 
contributes a value of unity to the final track-weighted out-
put map. These maps were binarised using a threshold of at 
minimum two streamlines per voxel. With the resulting bina-
rised maps, the mean radial diffusivity (RD) and fractional 
anisotropy (FA) of each tract were estimated.

Functional connectivity between Broca’s 
and Wernicke’s areas and along the frontal aslant 
tract

Functional connectivity (FC) was estimated between Broca’s 
and Wernicke’s areas as well as between the supplementary 
motor region/lateral superior frontal gyrus and the infe-
rior frontal gyrus. Rs-fMRI data were pre-processed using 
FSL’s FEAT pipeline which includes brain extraction, inten-
sity normalisation and slice time correction. Head-motion 
artifacts were corrected using FSL’s ICA-based Automatic 

Removal Of Motion Artifacts (ICA- AROMA) [70]. Con-
founding effects of WM and cerebrospinal fluid (CSF) were 
regressed out. The resulting pre-processed functional images 
were transformed into MNI152 2mm standard space for 
subsequent group comparisons: First, linear co-registration 
of the native high-resolution data was performed using 
6 degrees of freedom (DOFs), followed by non-linearly 
warping into standard space using 12 DOFs. FC was cal-
culated in Matlab R2021b (The Mathworks, Natick, USA), 
using the CoSMoMVPA [71] and FieldTrip [72] toolboxes 
and defined as Fisher z-transformed Pearson’s correlation 
between the time courses of the ROIs.

Statistical modelling

RStudio (R version 4.2.2) was used for statistical infer-
ences. Differences in means of age and education between 
patients (aggregating across subgroups) and HC were exam-
ined using Welch two-sample t tests. Sex and handedness 
rations were compared using Chi-square testing. To test 
differences in neuroimaging metrics between patients and 
HC, a one-way analysis of variance (ANOVA) omnibus test 
was implemented, correcting for the confounding effects of 
age, sex, handedness and years of education. To account for 
multiple comparisons, for CT and FC, we considered p val-
ues below 0.05/2 = 0.025 as significant (correcting for two 
ROIs); for WM tractography, we considered p values below 
0.05/6 = 0.008 as significant, correcting for the number of 
tracts evaluated (6).

Data availability

Statistical outputs and additional data processing details 
can be requested from the corresponding author. Individ-
ual patient clinical and neuroimaging data cannot be made 
available due to institutional regulations and departmental 
policies.

Results

Subjects

In total, data from 40 PLS patients and 111 HC were evalu-
ated. While complete structural, diffusivity and fMRI data 
were available from the majority of subjects, 11 patients 
with PLS had no rs-fMRI data and 2 healthy controls out 
of the 111 healthy subjects had no diffusion-weighted data 
available (Table 1). Welch two-sample t-testing indicated 
adequate matching for age [t(71.20) = 1.36, p = 0.18]; how-
ever, PLS patients had significantly fewer years of education 
[t(72.29) = − 3.72, p < 0.001]. As indicated above, educa-
tion was included as a covariate in our statistical models. 

Fig. 1   Tractography of six language-associated tracts: arcuate fasci-
cle (AF), frontal aslant tract (FAT), inferior occipito-frontal fascicle 
(IFO), inferior longitudinal fascicle (ILF), superior longitudinal fasci-
cle (SLF) and uncinate fascicle (UF)
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Chi-square testing revealed no significant differences in 
sex distributions [X2(1, N = 141) = 1.50, p = 0.22] and dis-
tributions of handedness [X2(1, N = 141) = 0.20, p = 0.66] 
between the study groups. Patients with PLS tested nega-
tive for GGG​GCC​ hexanucleotide expansions in C9orf72 
and the panel of HSP and ALS-associated genetic variants.

Cortical thickness

To assess cortical thickness differences of language-asso-
ciated regions between PLS and HC, we used analysis of 
variance (ANOVA), corrected for age, sex, handedness and 
years of education. CT differences were evaluated in two 
regions of interest (ROIs), Broca’s and Wernicke’s areas. 
To correct for multiple comparisons with regard to the 
two ROIs, we adjusted the alpha level p < 0.05/2 = 0.025. 
Results are illustrated in Fig. 2, and the details of the sta-
tistical comparisons are presented in Table 2. Significantly 
reduced cortical thickness was detected in Broca’s area in 
patients with PLS compared to controls [F(1, 147) = 49.11, 
p < 0.001]. The thickness of the right-hemispheric equivalent 
of Broca’s area was also significantly lower in PLS [F(1, 
147) = 53.46, p < 0.001]. Wernicke’s area also exhibited 
significantly lower CT in PLS compared to controls [F(1, 
147) = 36.13, p < 0.001], as well as in its right-hemispheric 
equivalent [F(1, 147) = 3.80, p < 0.001]. These findings sug-
gest that both Broca’s and Wernicke’s areas are affected in 
PLS, which is, however, not specific to the left hemisphere 
since similar atrophy was also detected in the equivalent 
brain regions in the right hemisphere.

White matter microstructure alterations

To evaluate differences in white matter (WM) integrity 
in language-associated tracts between PLS and HC, we 
used ANOVA, correcting for age, sex, handedness and 
years of education. We contrasted differences in radial 
diffusivity (RD) and fractional anisotropy (FA) in 6 lan-
guage-associated tracts on each hemisphere: (1) arcuate 
fascicle (AF), (2) frontal aslant tract (FAT), (3) inferior 
occipito-frontal fascicle (IFO), (4) inferior longitudinal 
fascicle (ILF), (5) superior longitudinal fascicle (SLF) and 
(6) uncinate fascicle (UF). To correct for multiple com-
parisons investigating these six tracts, we adjusted the 
alpha level p < 0.05/6 = 0.008. We illustrate the results 
of these comparisons in Fig.  3 and provide statistical 
details in Table 2. In the left hemisphere, significantly 
lower FA [F(1, 143) = 14.06, p < 0.001] and higher RD 
[F(1, 143) = 28.90, p < 0.001] was identified in the aslant 
tract in patients with PLS. Additionally higher RD was 
detected in the AF [F(1, 147) = 19.85, p < 0.001], and 
the SLF [F(1, 147) = 19.10, p < 0.001]. In the right hemi-
sphere, reduced FA was identified in the frontal aslant tract 
[F(1, 143) = 16.20, p < 0.001] and SLF [F(1, 147) = 10.23, 
p = 0.002] in patients with PLS compared to controls. 
Additionally, higher RD was detected in all investigated 
tracts with the exception of the SLF [F(1, 147) = 2.58, 
p = 0.11]. These findings indicate that language-associated 
tracts, the frontal aslant tract in particular, are affected in 
PLS in both hemispheres, and RD is more sensitive than 
FA in detecting white matter integrity alterations.

Fig. 2   Cortical thickness dif-
ferences between patients with 
PLS (PLS) and healthy controls 
(HC). *Statistically significant 
group differences



437Journal of Neurology (2024) 271:431–445	

1 3

Table 2   Statistical details of 
radiological comparisons

Radiological differences between individuals with PLS patients and healthy controls
*Bold font indicate significant p values at the corrected alpha levels (for CT and FC: p < 0.05/2 = 0.025, 
correcting for two ROIs for WM analyses: p < 0.05/6 = 0.008, correcting for six tracts)
ANOVA analysis of variance, CT cortical thickness, FC functional connectivity, PLS primary lateral sclero-
sis, ROI region of interest, WM white matter

Neuroimaging metric General linear model, testing main effect “neuroimaging metric”

Left hemisphere Right hemisphere

Sum square F value p value Sum square F value p value

Cortical thickness
 Broca’s area 2.066 49.11  < 0.001* 2.66 53.46  < 0.001*
 Wernicke’s area 2.644 36.13  < 0.001* 3.80 43.41  < 0.001*

Fractional anisotropy
 Arcuate fascicle 1.48e−3 4.89 0.03 4.90e−4 0.85 0.36
 Aslant tract 1.68e−2 14.06  < 0.001* 1.47e−2 16.20  < 0.001*
 Inferior occipito-frontal fascicle 9.00e−5 0.13 0.72 1.80e−4 0.34 0.56
 Inferior longitudinal fascicle 1.00e−5 0.01 0.92 4.40e−4 0.47 0.49
 Superior longitudinal fascicle 1.87e−3 4.31 0.04 6.78e−3 10.23 0.002*
 Uncinate fascicle 1.50e−4 0.17 0.68 2.50e−4 0.46 0.50

Radial diffusivity
 Arcuate fascicle 1.40e−8 19.85  < 0.001* 6.92e-9 8.87 0.003*
 Aslant tract 1.39e-7 28.90  < 0.001* 1.44e-7 33.57  < 0.001*
 Inferior occipito-frontal fascicle 1.08e-8 6.87 0.01 2.71e-8 19.84  < 0.001*
 Inferior longitudinal fascicle 4.51e-9 5.20 0.024 1.59e−8 12.03  < 0.001*
 Superior longitudinal fascicle 2.03e−8 19.11  < 0.001* 4.87e−9 2.58 0.11
 Uncinate fascicle 5.84e−9 4.83 0.023 1.19e−8 11.88  < 0.001*

Functional connectivity
 Broca’s–Wernicke’s areas 0.003 0.07 0.79 0.07 1.72 0.19
 Aslant tract: source-to-target 0.33 8.27 0.005* 0.306 6.22 0.014*

Fig. 3   Fractional anisotropy 
(FA) and radial diffusivity (RD) 
differences between patients 
with PLS (PLS) and healthy 
controls (HC) in the arcuate 
fascicle (AF), frontal aslant 
tract (FAT), inferior occipito-
frontal fascicle (IFO), inferior 
longitudinal fascicle (ILF), 
superior longitudinal fascicle 
(SLF) and uncinate fascicle 
(UF) *Statistically significant 
group differences
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Functional connectivity 

Functional connectivity (FC) differences in language-
associated circuits between PLS and HC were explored 
using ANOVA, correcting for age, sex, handedness and 
years of education. Differences in partial correlations 
of BOLD time courses were evaluated between two 
ROI pairs in each hemisphere: (1) between Broca’s and 
Wernicke’s areas and their equivalents in the right hemi-
sphere, and (2) between supplementary motor area/lat-
eral superior frontal gyrus and the inferior frontal gyrus, 
i.e. along the frontal aslant tract. Please note that the 
confounding effects of WM and CSF time courses were 
regressed out. To correct for multiple comparisons inves-
tigating the two circuits, the alpha level was adjusted to 
p < 0.05/2 = 0.025. The outcomes of the comparisons are 
illustrated in Fig. 4, and statistical details are provided in 
Table 2. Reduced functional connectivity was detected 
along the frontal aslant tract in patients with PLS both 
in the left [F(1, 134) = 8.27, p = 0.005] and right [F(1, 
134) = 6.22, p = 0.014] hemispheres. Functional con-
nectivity between Broca’s and Wernicke’s areas was not 
reduced in the left [F(1, 134) = 0.07, p = 0.789] or right 
hemispheres [F(1, 134) = 1.72, p = 0.192]. These findings 
demonstrate functional disconnection between the sup-
plementary motor region and the inferior frontal gyrus 
along the aslant tract in both hemispheres.

Discussion

Our data indicate that brain regions mediating a variety 
of language functions under physiological circumstances 
are heavily affected in PLS. We detected not only cortical 
thickness reductions in both Wernicke’s and Broca’s areas 
but also structural connectivity changes in the frontal aslant 
tract, arcuate and superior longitudinal fascicles of the left 
hemisphere. Furthermore, decreased functional connectivity 
was identified between the supplementary motor region and 
the inferior frontal gyrus.

Our study benefits from a multimodal, structural, func-
tional approach and our findings based on raw DWI and rs-
fMRI data are consistent. For example, we detect FA reduc-
tions and increased RD in the frontal aslant tract (Fig. 3) 
suggestive of impaired structural connectivity and we also 
detect decreased functional connectivity between the supple-
mentary motor region and the inferior frontal gyrus (Fig. 4) 
suggestive of impaired functional integrity along the aslant 
tract. The appraisal of multiple diffusivity metrics, instead 
of just assessing FA, is also beneficial, as radial diffusivity 
alterations capture the involvement of more tracts than by 
assessing FA alone (Fig. 3). The impact of sexual dimor-
phism and education on brain morphology is well recognised 
both in healthy individuals and ALS [73, 74]; therefore, sex 
and education have been incorporated in all of our statisti-
cal models. Interestingly, the majority of imaging changes 
are relatively symmetric and cortical thickness alterations, 
and structural and functional connectivity changes were also 

Fig. 4   Functional connectivity 
differences between patients 
with PLS and healthy controls 
(HC) *Statistically significant 
group differences
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noted in the right hemisphere. Broca’s area atrophy in MNDs 
have previously been associated with hexanucleotide expan-
sions in C9orf72 [75], and also noted in PLS [6]. In this 
study we demonstrate Broca’s area atrophy in PLS patients 
who tested negative for C9orf72 HREs and also identify 
Wernicke’s area cortical thickness reductions. While PLS 
is not associated with frank semantic deficits clinically, the 
radiological changes underline the rationale for thorough 
neuropsychological testing beyond cursory screening for 
cognitive deficits. In view of that caveats of pursuing direct 
clinico-radiological correlations [76], we have intentionally 
only performed descriptive radiological analyses. Neuropsy-
chological deficits in MNDs should not be linked to a single 
grey or white matter metric as these typically stem from 
the dysfunction of multi-synaptic networks [23] including 
cortical, subcortical and white matter components [77, 78].

While our data demonstrate widespread frontotemporal 
change and the involvement of long association fibres, the 
exact chronology of motor and extra-motor involvement 
is not entirely clear. The majority of participants have a 
relatively long symptom duration; therefore, it remains to 
be established if frontotemporal change in PLS is a late-
stage secondary phenomenon or if it preceded motor cortex 
involvement. The post-mortem literature of PLS with regard 
to extra-motor involvement is relatively scarce. The few lon-
gitudinal imaging studies in PLS also primarily focus on 
motor connectome degeneration [17, 19, 79], but there is 
imaging evidence of relatively early and progressive fronto-
temporal involvement in PLS [11–13]. Interestingly, studies 
of “probable” PLS, i.e. cohorts with a symptom duration less 
than 4 years, do not typically capture frontotemporal change, 
but identify primary motor cortex changes, suggesting that 
motor cortex and corticospinal tract degeneration likely pre-
cedes frontotemporal disease burden expansion [80, 81].

There are a number of misconceptions around PLS, one 
of which is that it is a relatively benign clinical entity, which 
is only true in comparison to ALS [82]. While PLS carries a 
better prognosis than ALS [83, 84], it does exhibit a relent-
lessly progressive clinical and radiological progression. 
Another misconception around PLS is that it is a clinically 
homogeneous condition with stereotyped clinical symptoms 
and clinical trajectory. The findings of this study highlight 
that despite unifying clinical symptomatology (spasticity, 
gait impairment, pseudobulbar affect), patients with PLS 
may exhibit varying degree of cognitive or behavioural 
change and that PLS may be more heterogeneous clinically 
than previously thought. Disease heterogeneity in univer-
sally recognised in ALS and the prognostic and survival 
implications of cognitive change in ALS have been exten-
sively studied [39]. In general, prognostic indicators and pre-
dictive markers have been extensively studied in ALS and 
much less so in PLS [85–88]. The recognition of clinical het-
erogeneity in ALS inspired cluster analyses of large data sets 

[89–91] to identify unique phenotypes with distinctive radi-
ological, clinical and genetic profiles. Furthermore, given 
the relatively high incidence of cognitive change in ALS, 
sub-phenotypes have been defined based on the impair-
ment in specific domains [33]. In PLS, terminology such 
as “PLS-plus” or “PLS-FTD” has been previously coined, 
but no uniformly utilised or defined based on psychometric 
measures. The appraisal of extra-motor involvement and 
detection of cognitive change is not merely an academic 
pursuit. The practical implications of cognitive change have 
been widely studied in ALS, and there is ample evidence 
that frontotemporal dysfunction impacts on compliance with 
assistive devices [92], adherences to therapies, may impact 
on caregiver burden and influence end-of-life decisions. It 
is also conceivable that marked frontotemporal change has 
ramifications for clinical trial participation. Clinical experi-
ence suggests that logopenic and agrammatic speech may be 
mistaken for apathy or depression and pseudobulbar affect 
mistaken for disinhibition [25]. Accordingly, raising aware-
ness of language deficits may be useful for early screening 
for these manifestations, triggering expert assessments and 
interventions by speech pathologists or speech and language 
therapists.

From a radiological perspective, extra-motor disease bur-
den in ALS is very well characterised [93–100], including 
presymptomatic extra-motor changes [1, 31, 101], and the 
identified anatomical patterns are often linked to the dis-
tribution of pathological TDP-43 [102, 103]. Radiological 
descriptions in ALS complement the wealth of neuropsy-
chology studies, which typically detect executive dysfunc-
tion, language deficits, memory impairment, disinhibition, 
apathy and deficits in social cognition [34, 36, 39, 100, 104, 
105]. Study designs in ALS are likely transferable to future 
PLS studies and there are obvious methodological lessons 
from existing ALS papers, such as the nuanced characterisa-
tion of cognitive change, assessment of longitudinal profiles 
and the study of the practical implications of frontotemporal 
dysfunction with regard to survival, decision making and 
adherence to MDT interventions.

ALS and PLS share a number of core clinical and radio-
logical features, including corticospinal tract involvement, 
corpus callosum degeneration, brainstem and cerebellar 
atrophy [8, 106]. The reliable distinction of early-stage 
upper motor neuron predominant ALS from PLS on clini-
cal grounds can be challenging, hence the minimum symp-
tom duration criterion of subsequent diagnostic criteria for 
PLS. Given their overlapping radiological signatures [83], 
machine learning frameworks had difficulty reliably distin-
guishing ALS from PLS based on cerebral MRI data alone 
[107]. While individual subject classification into diagnostic, 
phenotypic or prognostic categories is a relatively new field 
of MND research, a multitude of statistical approaches have 
been successfully trialled to date [78, 108, 109]. From a 
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methodological perspective, imaging studies in PLS primar-
ily rely on structural and diffusivity data [11, 18], sometimes 
rs-fMRI is incorporated [15, 16] in the protocols, but unlike 
in ALS, paradigm-based or motor imagery fMRI is seldom 
utilised [110, 111]. MR spectroscopy is also underutilised in 
PLS, despite its potential to reveal early metabolic changes, 
possibly preceding structural degeneration [112].

This study is not without limitations. Only cross-sectional 
analyses have been conducted; therefore, the longitudinal 
evolution of pathological change in language-associated 
areas cannot be inferred from these data; the chronology 
of motor and language involvement also remains to be 
established. Another shortcoming of this study is that no 
post-mortem data are available for the anatomical align-
ment of histopathology and imaging data which would be 
an important cross-validation step. Notwithstanding these 
limitations, our clinical and imaging data demonstrate that 
pathology in PLS is not confined to motor regions and that 
multiple language-associated brain regions are significantly 
affected. Unlike in ALS, where the impact of cognitive defi-
cits has been widely studied, the practical ramifications of 
neuropsychological deficits in PLS remain to be evaluated, 
so that multidisciplinary care can be tailored to individual 
patient profiles. The traditional view of PLS as a relatively 
“benign”, clinically homogeneous, “motor-system only” 
disease needs to be urgently challenged and frontotemporal 
disease-burden needs to be comprehensively characterised 
both in vivo and post-mortem.

Conclusions

PLS should no longer be regarded as pure UMN disorder 
with the exclusive involvement of the primary motor cortex 
and the descending corticospinal tracts. Our data add to the 
accruing clinical and neuroimaging evidence that PLS is 
a multi-system disorder with considerable frontotemporal, 
subcortical and cerebellar involvement.
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