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REVIEW

Neuroimaging in hereditary spastic paraplegias: from qualitative cues to precision
biomarkers
Grainne Mulkerrina, Marcondes C. França Jrb, Jasmin Lopec, Ee Ling Tanc and Peter Bede a,cQ1

a5 Department of Neurology, St James’s Hospital, Dublin, Ireland; bDepartment of Neurology, the State University of Campinas, São Paulo, Brazil;
cComputational Neuroimaging Group, Trinity College Dublin, Ireland

ABSTRACT
Introduction: Hereditary spastic paraplegias (HSP) include a clinically and genetically heterogeneous
group of conditions. Novel imaging modalities have been increasingly applied to HSP©cohorts, which

10 helps to quantitatively evaluate the integrity of specific anatomical structures and develop monitoring
markers for both clinical care and future clinical trials.
Areas covered: Advances in HSP imaging are systematically reviewed with a focus on cohort sizes,
imaging modalities, study design, clinical correlates, methodological approaches, and key findings.
Expert opinion: A wide range of imaging techniques have been recently applied to HSP cohorts.

15 Common shortcomings of existing studies include the evaluation of genetically unconfirmed or
admixed cohorts, limited sample sizes, unimodal imaging approaches, lack of postmortem validation,
and a limited clinical battery, often exclusively focusing on motor aspects of the condition. A number of
innovative methodological approaches have also©been identified, such as robust longitudinal study
designs, the implementation of multimodal imaging protocols, complementary cognitive assessments,

20 and the comparison of HSP cohorts to MND cohorts. Collaborative multicent©er initiatives may overcome
sample limitations, and comprehensive clinical profiling with motor, extrapyramidal, cerebellar, and
neuropsychological assessments would permit systematic clinico-radiological correlations. Academic
achievements in HSP imaging have the potential to be developed into viable clinical applications to
expedite the diagnosis and monitor disease progression.Q2
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1. Introduction

Hereditary spastic paraplegia (HSP) is an umbrella term for
a group of genetically and phenotypically diverse inherited
neurodegenerative disorders, characterized© by progressive

30 spasticity and weakness primarily affecting the lower limbs.
As proposed by Harding’s criteria [1Q4 ], HSP can be clinically
divided into ‘pure’ and ‘complicated’ forms. Pure-HSP (pHSP)
presents with insidious onset progressive spasticity of the
lower limbs,©hyperreflexia, and upper motor neuron (UMN)

35 sign. Weakness of the lower limbs can be mild, with
a characteristic discordance between the severity of spasticity
and relatively preserved power. In complicated-HSP (©cHSP),
spastic paraparesis is accompanied by additional neurological
signs. Optic atrophy, extrapyramidal features, cerebellar signs,

40 cognitive impairment,©sensorineural©deafness, and epilepsy are
some of the additional neurological manifestations associated
with cHSP. Initial symptoms are typically subtle; gait distur-
bance, stiffness and falls, and disease progression is often
slow, but can lead to significant disability [2].

45 Over 100 loci/88 genes have been implicated in the patho-
genesis of HSP to date [3]. Inheritance can be autosomal
dominant (AD), autosomal recessive (AR), X-linked,

©mitochondrial, or sporadic [4]. The genetic classification for
HSP is based on sequential numbering of genes, using

50a spastic paraplegia gene (SPG) prefix. The most common
genotypes seen in clinical practice are SPG4 and SPG11.
SPG4 is a©pHSP that exhibits AD-inheritance of the spastin
(SPAST) gene and accounts for up to 60% of all HSP cases.
SPG11 is the most prevalent AR-inherited HSP accounting for

55approximately 8% of all HSP cases and categorized©as a cHSP
with additional features such as cognitive impairment, periph-
eral neuropathy,©ataxia, and urinary symptoms. SPG3A is
a clinically pure HSP phenotype and the second most
common AD-inherited HSP, accounting for 5–10% of AD

60HSPs that are negative for SPAST mutation. SPG15 is inherited
in an AR manner and phenotypically similar to SPG11. Finally,

©SPG7 that tends to manifest in the fourth decade with spastic
paraparesis and cerebellar signs, is a cHSP inherited in an AR
manner [5].

65There is a striking paucity of postmortem©studies©on HSP.
The ‘dying-back axonopathy’ phenomenon is traditionally con-
sidered as the pathological basis of the condition [6] with
length-dependent degeneration of the corticospinal tracts,
fasciculus©gracilis, and spinocerebellar tracts [6]. Recent post-

70mortem©studies seem to support the ‘dying-back’ theory by
describing axonal degeneration of the corticospinal tracts,
with distal axons more severely affected [7].

The clinical indication for neuroimaging in HSP is to rule
out alternative structural, vascular neoplastic, and
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75 neuroinflammatory diagnoses, such as spinal spondylosis,
spinal or cerebral AVMs, Chiari malformation, and primary
progressive multiple sclerosis©. Metabolic causes such as B12
vitamin deficiency or infectious causes such as HIV-
myelopathy,©HTLV1, or neurosyphilis are also potential differ-

80 ential diagnoses to consider during the initial investigations.
Given the relatively low incidence of the condition, insidious
onset, slow progression, the heterogeneity of initial presenta-
tions, and wide range of differential diagnoses, patients often
face a protracted diagnostic journey. Diagnostic delay, mis-

85 diagnoses, and unnecessary interventions are not uncommon
[8]. The cost of testing for large panels of HSP-associated
genes may be prohibitive in some jurisdictions, family history
may not be readily available in some cases, and clinical over-
lap with other neurodegenerative conditions such as primary

90 lateral sclerosis (PLS) may also contribute to diagnostic delay
[9]. Patients often seek second opinions©and may attend multi-
ple specialists before the diagnosis is confirmed. Patients may
be initially referred to orthopedic©services,©neurosurgeons, or
physiotherapists before review in a tertiary neurology service.

95 Establishing the diagnosis in a timely manner is hugely impor-
tant so that unnecessary interventions can be avoided, multi-
disciplinary interventions can be promptly initiated, and
genetic counseling©can be organized©. In the absence of effec-
tive disease-modifying therapies, supportive care is the main-

100 stay of HSP management. A multidisciplinary approach

©comprising pharmacological management of spasticity, fall
prevention, physiotherapy for rehabilitation, and occupational
therapy for disability are key strategies to maintain indepen-
dence. No effective disease-modifying therapies have been

105 confirmed to©date, and clinical trials for new agents are limited
by the lack of a reliable biomarker for the disease.

Computational neuroimaging is increasingly recognized©as
a powerful noninvasive©tool in low-incidence neurodegenera-
tive conditions [10–13], which readily capture disease-specific

110patterns of pathology in vivo based on regional integrity
metrics. Quantitative neuroimaging is also increasingly utilized©
to track disease burden patterns longitudinally and has
a viable biomarker role in a multitude of neurodegenerative
conditions [14]. A novel frontier of neuroimaging is quantita-

115tive spinal cord imaging, which has successfully captured seg-
mental gray©and white matter alterations in motor neuron
diseases, spinal muscular atrophy, and spinal and bulbar mus-
cular atrophy©[15–19]. Given the considerable progress in MR
technology, the emergence of high-field and ultra-high field

120scanners, the availability of robust image processing pipelines
and open-source analysis suites, we sought to systematically
review the imaging literature in HSP.

2. Body

2.1. Methods

125A formal literature review was conducted on PubMed between
October 2021 and December 2021 using the keywords ‘her-
editary spastic paraplegia’ and ‘hereditary spastic paraparesis’
in combination with the individual search terms: ‘imaging,’
‘neuroimaging,’ ‘magnetic resonance imaging,’ ‘magnetic reso-

130nance spectroscopy,’ ‘positron emission tomography,’ and ‘dif-
fusion tensor imaging.’ Only articles published in English were
included. No exclusion criteria were set based on©the year of
publication. Additional articles were also included based on
references©to relevant review articles. Review articles, opinion

135©pieces, and editorials were excluded. Identified original papers
were systematically reviewed for sample size, genetic screen-
ing, choice of controls (healthy/disease), qualitative versus
quantitative imaging, primary imaging methods (structural,
diffusion, spectroscopy, functional, metabolic,©spinal, etc.),

140unimodal versus multimodal imaging, image analysis software,

©postmortem validation, clinical assessment (scales, scores,
motor, and cognitive), clinico-radiological©correlations, and
main study findings.

2.2. Results

145Based on the above search criteria, a total of 108 original
research papers were identified.©Forty-one of these described
qualitative findings, primarily on MRI. Sixty-seven studies
utilized©quantitative imaging such as diffusion tensor imaging
(DTI – 30 studies), MR spectroscopy (MRS – 16 studies), PET-CT

150(18 studies) and functional MRI (fMRI – 3 studies). The vast
majority of studies focused on cerebral imaging. Spinal altera-
tions were specifically appraised by 23 studies, but only 4
utilized©quantitative approaches.

The majority of imaging studies©on HSP suffer from grave
155sample size limitations. Only two imaging studies were identi-

fied with greater than 50 HSP patients [20,21]. Forty-five stu-
dies included less than 10 participants, and a further 18
studies were single patient case-reports. The vast majority of
identified studies were cross-sectional in design,

160whil©e longitudinal imaging follow-up was only performed in
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©characterization of anatomical propagation patterns.
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©eight studies. Some clinical assessment was performed in
almost all studies, and disease severity, mainly SPRS, was
reported in 23 studies. Clinico-radiological correlations were
explored in 23 studies, most commonly with disease duration

165 [20,22–29], cognition [22,30–35] and spasticity [20–
27,29,34,36–38]. We identified no studies that correlated
in vivo imaging patterns to postmortem©pathological findings.

2.3. Typical findings on visual inspection – qualitative
imaging

170 The diagnosis of HSP can be challenging, especially given the
clinical and genetic heterogeneity of the condition. While MRI
may look normal on visual inspection [39–46], stereotyped
cerebral and spinal cord alterations are commonly appreciated
(Figure 1).

175 2.3.1. Spinal cord atrophy
A large study of genetically unconfirmed pHSP and cHSP©
detected considerable cervicothoracic spinal cord atrophy
compared to©demographically matched controls [47]. The
same study found no difference between the pHSP and cHSP

180 subgroups. In another group of clinically confirmed HSP
patients,©a reduced cervical spine cross-sectional area was
observed in patients in comparison to controls [34]. The ante-
roposterior (AP) diameters of the thoracic spine at T3 and T9
were significantly lower than controls in another qualitative

185study looking at clinically confirmed pHSP [48]. In genetically
confirmed HSP, spinal cord atrophy may be observed in SPG5
[41], SPG6 [42], SPG7 [49]. Interestingly, a syrinx was observed
in©two SPG54 patients [50]. However, cord atrophy is not
a consistent finding; in other studies, MRI of the spinal cord

190looked relatively normal in SPG3A [51,52], SPG4 [39], SPG7
[53,54], SPG11 [55], SPG15 [56] and SPG46 [57]. This inconsis-
tency highlights the limitations of visual inspection, disease-
associated radiological ©cues, and qualitative assessments.
None of the above articles describing ante mortem qualitative

195spinal changes provided descriptions of postmortem© cord
changes.

2.3.2. The ‘ears of the lynx’ sign
The ‘ears of the lynx’ sign refers to T2/FLAIR hyperintensity on
axial views at the tip of the frontal horn of the lateral ven-

200tricles, named after the tufts of hair at the tips of the ears of
a lynx cat. This sign is typically associated with SPG11 and
SPG15 mutations [58]. The ears of the lynx sign is found to be
relatively sensitive (78.8©–97%) and rather specific (©90.9–100%)
to SPG11 and SPG15 in a blinded study with©four different

205raters [58].

2.3.3. Thin corpus callosum
Thin corpus callosum (TCC) is a common finding in HSP. Prior
to the discovery of the many genetic subtypes of HSP, auto-
somal recessive HSP with thin corpus callosum (AR-HSP-TCC)

Figure 1. Illustrative examples of radiological changes commonly observed in HSP on visual inspection. a: ‘Ears of the lynx’ sign on axial FLAIR imaging in a 21 year-
old female patient with SPG11. b: thin corpus callosum on sagittal T1-weighted imaging in a 25 year-old male patient with SPG11. c: Cerebellar atrophy on sagittal
T1-weighted imaging in a 37 year-old male patient with SPG15. d: Cerebellar atrophy and arachnoid cyst on sagittal T1-weighted imaging in a 35 year-old male
patient with SPG7.
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210 was a commonly used terminology to describe what is now
a probably genetically diverse subgroup. HSP-TCC is most
commonly reported in association with SPG11 [55,59–66]
and SPG15 [56,59,63,67–69]. However, TCC may also be
a feature in SPG3A [51,52], SPG21 [70], SPG 28 [71], SPG30

215 [62,72], SPG35 [63,73], SPG45 [74], SPG46 [57,75], SPG47 [76],
SPG48 [63], SPG52 [62], SPG54 [50,62,77–80] and SPG78 [81].
TCC is not a consistent finding in many of these subtypes, for
example, in a study of SPG3A it was only noted in 1 of the 18
patients imaged [51]. In a small study (n = 2) which imaged

220 patients with SPG11 ©longitudinally, TCC progressed over
a©©5-year interval [55]. In©contrast, however, another case report
of AR-HSP-TCC detected no progressive thinning of the corpus
callosum over a 4 years interval [82]. It is noteworthy that thin
corpus callosum (CC) is by no means specific to HSP and is

225 commonly observed in ALS, PLS,©CBS, and other neurodegen-
erative conditions [83–87].

2.3.4. Cerebellar atrophy
Cerebellar atrophy has been described in SPG7 [54,59,88–90],
SPG21 [70], SPG30 [62,91], SPG31 [62], SPG35 [62,63,92], SPG39

230 [59], SPG 46 [57,75], SPG50 [93], SPG78 [81,94], and SPG54 [80].
Cerebellar atrophy is thought to be progressive on longitudi-
nal imaging in a small (n = 2) SPG30 study [72], and in a single
patient with SPG78 who was followed longitudinally [94]. In
contrast, other case reports of SPG 30 [91] and SPG47 [76]

235 observed relatively stable cerebellar volumes over time. Other
posterior fossa abnormalities, such as retro-cerebellar fluid
collection and cerebellar hypoplasia in SPG4 [95] and uncom-
plicated arachnoid cysts of the cerebellopontine angle in SPG4
[96] were also reported. In some cases, cerebellar atrophy is

240 accompanied by brainstem hypoplasia/atrophy, e.g. SPG35
may present with©pontocerebellar hypoplasia [92]. Similar to
the above qualitative cues, cerebellar atrophy is far from
unique to HSP, and is commonly observed in motor neuron
disorders and other neurodegenerative conditions [97–100].

245 2.3.5. Cerebral atrophy
Cerebral atrophy on routine brain MRI has been commonly
observed in HSP. In a group of genetically©heterogeneous HSP
patients, cortical atrophy was reported in 25/58 patients
imaged [21].©Likewise, in clinically (but not genetically) con-

250 firmed HSP, mild brain atrophy was observed in 4 of 9 patients
[101]. In studies that looked at those with a causative gene for
HSP, cerebral or cortical atrophy was noted in SPG4 [32], SPG7
[49], SPG11 [60,61], SPG 21 [70], SP30 [62], SPG56 [62], and
SPG78 [81]. In a subset of SPG4 patients with cognitive impair-

255 ment, frontotemporal atrophy was correlated with the degree
of cognitive impairment [102]. As with the above signs, cere-
bral volume loss is notoriously nonspecific©and has a limited
role in swaying a diagnostic dilemma.

2.3.6. White matter hyperintensities
260 White matter hyperintensities (WMH) are nonspecific©findings

associated with numerous pathological processes. WMH has
been reported in SPG2 [103], SPG4 [62], SPG5 [104], SPG11 [61–
63,105], SPG15 [63,67,68], SPG21 [70], SPG31 [62], SPG35
[62,63,73,92,106], SPG45 [74], SPG47 [107], SPG48 [63], SPG52

265[62] and SPG54 [50,62,77]. In a case series of©two related SPG2
patients, the index patient was initially misdiagnosedwith primary
progressive multiple sclerosis based on presentation and imaging
findings [103]. In one patient with SPG2 who was imaged long-
itudinally, the WMH was stable on repeat imaging [108].

2702.3.7. Subcortical alterations
While deep brain structure abnormalities have been observed
on routine brain MRI in certain HSP subtypes, these findings
are inconsistent in the literature. In SPG35, mild hypointensity
of the globus pallidus was noted in 77% of cases on the

275retrospective review of MR images [92]. Hypothalamic atrophy
was observed in SPG11 cases compared with controls in
another study [24]. Atrophy of the caudate nucleus was
noted in an imaging study of three related patients with
genetically confirmed SPG78 exhibiting prominent extrapyra-

280midal signs [81]. Hyperintensity of the dentate nucleus was
observed both in SPG7 [89] and KIF1A [109,110]. Subcortical
iron deposition has been observed in SPG28 [71]. Iron deposi-
tion has also been described in SPG35 cases [106]©but not
confirmed by©a larger series (n = 19) on the same gene [92].

2852.3.8. Optic nerve atrophy
Optic nerve atrophy or hypoplasia has been described in
several HSPs, including SPG30/KIF1A [109,110], SPG7 [111]
and SPG54 [62]. The spectrum of ophthalmological abnormal-
ities observed in HSP [112] comprises other changes such as

290yellow retinal ‘flecks’ in SPG11 and SPG15, progressive external
ophthalmoplegia in SPG7 [113], and supranuclear gaze palsy
in SPG7 [49]©, but the discussion of these manifestations and
macular optical coherence tomography (OCT) findings is
beyond the scope of this review.

2952.4. Computational neuroimaging – quantitative
imaging

2.4.1. Spinal cord imaging
There is a striking scarcity of quantitative spinal imaging studies

©on HSP. Existing studies have either performed morphometric
300[38]©or diffusivity analyses [114]. Spinal cord cross-sectional area

reductions were captured in SPG11 patients in comparison to
controls [26] which correlated inversely with both disease dura-
tion and severity. Spinal cord atrophy, involving both gray©and
white matter©components, has been observed in SPG11 and

305SPG4, but not in SPG3A or SPG7 [28]. The gray©matter area of
the spinal cord was inversely correlated with©the disease dura-
tion in the SPG4 group, but no significant correlation was seen
in the other genetic subtypes [28]. One study ascertained CST FA
reductions at the cervical level [37], which correlated with dis-

310ease duration, but not symptom severity as assessed by the
SPRS. A recent SPG4 study detected FA reductions and increased
radial diffusivity (RD) at cervical and thoracic levels©in both the
lateral and dorsal columns. Key study characteristics of imaging
studies evaluating cord alterations are summarized©in Table 1.

3152.4.2. Structural,©morphometric, and volumetric studies
Cerebral,©cerebellar, and corpus callosum volume reductions
are commonly detected by quantitative HSP studies [115].
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©However, in some studies, volumetric analyses have not cap-
tured brain atrophy in SPG4-associated HSP [38,44]. In geneti-

320 cally confirmed HSP, reduced cortical thickness has been
observed in SPG4 [22], SPG11 [20,26], and SPG8 [20].
Conversely,©the lack of cortical thickness reduction was high-
lighted by some SPG4 and SPG3A studies [20].©Voxel-based
morphometry often captures gray©matter alterations in the

325 prefrontal cortex [25] and the thalami [23,25,26,29]. Brain par-
enchymal fractions also reveal significant brain atrophy in HSP
patients compared with controls [31,116]. Basal ganglia atro-
phy is a common finding in HSP patients and has been
reported both in SPG4 [20,22,23] and SPG11 [20,117]. In line

330 with©subjective and qualitative observations, cerebellar atro-
phy has also been detected in SPG11 [20], SPG7 [20] and
SPG4 [23].

2.4.3. Diffusion tensor imaging (DTI)

©Tract-based spatial statistics (TBSS) typically reveals corticosp-
335 inal tract degeneration in HSP [23,25,34,37,38,118]. In geneti-

cally confirmed HSP, corticospinal white matter alterations
were specifically observed in SPG4 [22,23,38,44], SPG7 [40,49]
and SPG11 [64,119]. White matter changes are also commonly
observed in other brain regions, often with limited change

340 over time on longitudinal follow-up [25]. Specific anatomical
locations that exhibit reduced white matter integrity in HSP
include the corpus callosum [25,34,37,38,116,118,120], the
brainstem [37], the optic radiation [37], the frontal lobes [37],
fronto-occipital regions [25], parieto-occipital regions [37], the

345 external capsule [34], the temporal lobes [37], the longitudinal
fasciculi [25,118], the cingulate gyri [25,38] and the thalamic
radiations [118]. Anatomically widespread, ‘©generalized,’ white
matter degeneration was observed in SPG11 with reference to
controls [26,121]. The corpus callosum is affected in SPG4

350 [22,23], SPG7 [20,122] and SPG11 [20,64,119,121–124]. Extra-
motor fractional anisotropy (FA) reductions are commonly
observed in SPG11 including the thalamus [123], the frontal
and peritrigonal white matter [122], periventricular white mat-
ter [125] and the cerebellum [123]. In SPG7, the corticospinal

355 tract [40,49], frontal lobes [40,49], and midbrain [49] exhibit
reduced white matter integrity. Multiple SPG4 studies describe
particularly widespread white matter degeneration, in particu-
lar in the corticospinal tracts [23,44], thalamus [23], brainstem
[23] and cerebellum [23]. The distinguishing WM signature of

360 HSP in comparison to PLS and ALS©is poorly characterized©
[126–128].©The main study characteristics of structural and
diffusivity studies are summarized©in Table 2.

2.4.4. PET-CT
PET-CT,©SPECT, and DAT studies©on HSP suffer from consider-

365 able sample size limitations. Nonetheless, these studies pro-
vided important academic insights with©regard to metabolic
signatures in specific HSP subtypes and the likely substrate of
the motor and extra-motor deficits observed clinically.
Thalamic hypometabolism is routinely observed in SPG11 on

370 FDG-PET-CT [60,65,66]. This may be progressive in some
patients over a 10-year follow-up [60]. In another study of
genetically unconfirmed HSP-TCC, progressive thalamic hypo-
perfusion was observed on SPECT over 4 years [82]. Reduced
striatal density has also been observed in clinically confirmed

375HSP [129], SPG11 [27], SPG78 [94], SPG7 [54]. This correlated
with SPRS and disease duration in the SPG11 group [27].
Cortical hypometabolism may also be a feature of HSP. This
has been reported in the frontal cortex of SPG3A [130], and in

©the frontotemporal cortical regions in SPG11 [55]. On SPECT,
380hypoperfusion of the frontotemporal cortices in SPG4 was

linked to cognitive impairment [32]. Other studies noted
reduced regional cerebral blood flow in the left frontotem-
poral cortex in SPG4, without direct correlations with cognitive
profiles [35]. Cerebellar hypometabolism is also commonly

385observed in HSP; it has been described both in SPG11 [131]
and SPG5 [104]. On SPECT, cerebellar hypoperfusion has also
been observed in SPG4 [132].

Similar to initiatives in other MNDs such as ALS [133,134],
functional reorganization©in response to structural degenera-

390tion is increasingly investigated. Cortical activation patterns in
SPG4-linked HSP were evaluated by rCBF PET-CT during
affected and unaffected lower limb tasks [135]. During ankle
movement, patients exhibited increased rCBF in the primary
motor cortices (PMC), the supplementary motor areas (©SMAs),

395and the premotor cortex compared to controls; which may be
indicative of motor cortical reorganization©or adaptation to
degenerative change. Conversely, there are also reports of
normal PET-CT imaging©HSP, specifically in SPG2 [108] and
SPG7 [54].

4002.4.5. MR spectroscopy (MRS)
Sixteen studies utilized©magnetic resonance spectroscopy to
evaluate©the underlying biochemical and metabolic processes
determining ©the clinical phenotypes ©of HSP. Metabolic
abnormalities may be a consistent feature of HSP, however

405the inconsistency between studies with©regard to region-of-
interest (ROI) makes the systematic integration of study find-
ings challenging. Investigated ROIs include the centrum semi-
ovale [60,108,136,137], basal ganglia [50,77,78,138], corpus
callosum [105,119], the frontal white matter [30,136], occipito-

410parietal regions [46,60], occipito-frontal region [108], mid-
occipital region [108], parietal region [136], the cerebellum
[119], supraventricular white matter [65], periventricular
white matter [105], precentral white matter [21], the internal
capsule [60], the corona radiata [105] and the brainstem [136].

415The most common MRS finding in HSP is N-acetyl-aspartate
(NAA) level reduction in various brain regions, but a large
study (n = 70) identified normal precentral metabolite levels
[21]. In SPG11, NAA reductions were reported in the frontal
white matter [60], corona radiata [105], periventricular white

420matter [65,105], the centrum semiovale [136], and corpus
callosum [119]. In genetically diverse HSP, reduced NAA/Cr
levels were observed in the right prefrontal region [25].
However,©the findings are inconsistent; NAA was reduced in
the occipito-frontal white matter in only one of©the two

425patients with SPG2 in another study [108©], and increased
NAA levels were also reported in the centrum semiovale
[137]. NAA/Cr reductions in the corona radiata in SPG11 inver-
sely correlated with disability scores [105]. Myoinositol (MI)
changes are the second most common MRS alterations

430reported in HSP. Increased mI/Cr ratio has been described in
occipito-parietal regions in SPG5A [46], occipito-frontal areas
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in SPG2 [108], in the supraventricular white matter in SPG11
[65] and in pre-central regions in genetically diverse HSP [25].
The basal ganglia were specifically evaluated in four MRS

435 studies. Abnormal basal ganglia lipid profiles were described
in SPG54 [50,78,138©], while levels of other metabolites in the
basal ganglia may be normal [138]. In contrast, another study
found normal lipid levels in the basal ganglia in SPG54 [77].

2.4.6. Functional MRI (fMRI)
440 Despite its advantages to characterize©functional alterations

and network integrity alterations noninvasive©ly [10], very few
studies utilized©fMRI in HSP. One resting state study revealed
widespread cerebral connectivity alterations [139]. Other fMRI
studies implemented a motor task to assess disease-associated

445 cerebral activation profiles [36,140]. One study identified
increased cerebral activation [140], and the other found
decreased activation [36]. Specific study characteristics of
metabolic and functional studies are summarized©in Table 3.

3. Conclusions

450 Our review illustrates that a wide variety of neuroimaging
techniques have been used in©HSP, often with strikingly incon-
sistent findings. The literature is dominated by case studies,
case©series, and studies of very small sample sizes. Unifying
conclusions are difficult to draw from the available PET,©MRS,

455 and fMRI studies due to the considerable differences in study
designs. In contrast, DTI studies show relatively consistent
results, highlighting CST and CC degeneration as a relatively
consistent feature of HSP. Despite sample limitations and
methodological differences, spinal cord atrophy and spinal

460 corticospinal degeneration are also a relatively consistent
observation in HSP. Cerebellar involvement, thalamic

©abnormalities, and preferential corpus callosum atrophy are
other commonly detected radiological features.

Clinical parameters of disease severity and disability scales
465 (such as the widely used SPRS) may be of relatively limited

value for the precision tracking of accruing disease burden.
Functional scales are merely indirect proxies of pathological
change in the central nervous system (CNS) and may be less
likely to change during the typical duration of a clinical trial

470 than a quantitative biomarker. This is in contrast©to neuroima-
ging, which provides objective, observer-independent, anato-
mically coded quantitative integrity markers. An additional
benefit of neuroimaging is that the vast majority of advanced
imaging modalities are noninvasive©and require no contrast

475 administration. MR scanners are widely available at most insti-
tutions, and the vast majority of suspected HSP patients
undergo cerebral and spinal imaging anyway as part of their
diagnostic work-up. The inclusion of high-resolution structural
and diffusion pulse sequences©adds little additional time and

480 data processing can be run on a number of open-source and
user-friendly©cloud-based applications.

The systematic review of imaging in HSP helps not only©to
identify stereotyped shortcomings©but also to outline desir-
able study designs for future studies. As with other low inci-

485 dence MNDs, collaborative efforts, national©repositories, and
multi-©site studies may help to boost cohort sizes and conduct
larger imaging studies. Ideally, several genotypes should be

included in one study in an attempt to delineate genotype-
specific imaging traits. Harmonized© protocols have been

490extensively used in other neurodegenerative conditions such
as AD, ALS, FTD, HD [143,144]. In other conditions, presympto-
matic imaging has revealed considerable structural,©metabolic,
and functional changes long before symptom manifestations
[18,145,146] this also is of considerable interest in HSP [147].

495The evaluation of presymptomatic changes may help to clarify
emerging biological concepts such as ‘motor reserve,’ factors
leading up to phenoconversion, and the chronology of motor
and extra-motor changes©. From a practical©standpoint, the
characterization© of presymptomatic changes may help to

500establish the optimal window for pharmacological interven-
tion in future trials and the development of predictive models

©with regard to projected symptom onset. Longitudinal radi-
ological changes are poorly characterized©in HSP despite their
relevance to anatomical propagation patterns, flooring- and

505ceiling-effects of MR©metrics, etc. Longitudinal studies are not
merely of academic importance, they are also crucial for the
development of monitoring markers for clinical practice and
markers to appraise response to therapy in future trials.©Multi-
timepoint and multi-modal studies with uniform follow-up

510intervals are ideally suited to characterize©progressive changes.
While machine-learning (ML) applications based on imaging
variables have been extensively tested in other neurological
disorders, these have not been implemented in HSP to date
[148–153]. Given the long diagnostic journey most patients

515with HSP face,©imaging-based patient categorization©into spe-
cific subgroups may help to expedite the diagnosis. Cluster
analyses based on imaging have also contributed important
insights in motor neuron disorders but are yet to be applied to
HSP data [154,155]. Another important trend in neuroimaging

520is the characterization©of disease burden in single patients
instead of describing group-level©signatures, which helps the
precision tracking of accruing pathology in individual patients
[156,157]. Stereotyped limitations of identified HSP studies
include the exclusive focus on cerebral imaging, small sample

525sizes, the assessment of genetically admixed groups, inclusion
of genetically not confirmed patients, lack of correlations with
clinical variables, lack of extra-motor assessments (cognition,
behavior©, apathy, language, extra-pyramidal©features, etc.),
lack of longitudinal follow-up, and the absence of©postmortem

530validation. Desirable future study features would©include
multi-site/multicent©er projects, harmonized©imaging protocols,
the genetic screening of each participant, in-depth clinical
profiling, characterization©of extra-motor features, spinal ima-
ging, and the inclusion of asymptomatic mutation carriers.

535Clinical assessments accompanying imaging should ideally
include a bladder questionnaire, as well as tests for executive
function, language, memory, and social cognition. Delineation

©of radiological changes observed in primary lateral sclerosis
(PLS) needs to be clarified as there is a considerable overlap in

540both clinical and radiological features. Imaging studies of PLS
also invariably describe PMC, CST, CC,©and BG changes similar
to those observed in genetically confirmed HSP [158,159]. PLS
studies©should, therefore, meticulously screen their partici-
pants for known HSP mutations [160].

545It is noteworthy that more recent white matter techniques
such as neurite orientation dispersion and density imaging
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(NODDI), diffusion kurtosis imaging (©DKI), and©high angular
resolution diffusion imaging (HARDI) have not been applied
to larger patient cohorts yet, despite their superior potential to

550 characterize©white©matter integrity especially©with regard to
crossing fibers©. Furthermore, novel multi-voxel whole-brain
spectroscopy©sequences that have been extensively used to
other MNDs are yet to be applied to HSP [161,162]. Other
imaging modalities, which have been extensively utilized©in

555 MNDs, such as connectomic approaches, quantitative suscept-
ibility mapping (QSM), motor imagery-based fMRI, and texture
analysis,©are yet to be implemented in HSP [163–165]. Another
stereotyped shortcoming of existing HSP imaging studies is
the lack of relevant disease controls such as ALS or PLS, which

560 would help to appraise the specificity of purported radiologi-
cal signatures to HSP. Anatomically expanded activation pat-
terns observed on task-based fMRI studies need to be
interpreted with caution. There is a notion that slowly pro-
gressive neurodegenerative conditions and neurological syn-

565 dromes with initial insult in childhood, such as post-
poliomyelitis©syndrome, may be associated with compensatory
processes and structural©adaptation, which may be detected
by advanced imaging methods [166]. The existence of such
adaptive or compensatory processes needs to be clarified in

570 HSP. Contrary to other MNDs, these mechanisms have not
been studied in HSP to date.

4. Expert Opinion

Irrespective of the underlying genotype, hereditary spastic
paraplegias are associated with significant diagnostic chal-

575 lenges, motor disability, and quality-of-life implications. HSP
also exhibit considerable clinical heterogeneity with respect to
extra-motor manifestations, progression©rates, and age of
onset. A unifying feature of HSPs is the lack of disease mod-
ifying therapies, scarcity of drug development©initiatives, and

580 lack of non-clinical quantitative monitoring markers. Key bar-
riers to the effective management of this low-incidence con-
dition include the lengthy diagnostic journey, limited
understanding of the pathophysiology of the genetic

©subtypes, and a lack of disease modifying therapies.
585 MRI brain and whole spine are routinely performed in all

patients presenting with spastic paraparesis to rule out the
relevant disease mimics. While reviewing clinical scans for
HSP-associated radiological cues such as thin corpus callosum,
‘ears-of-the-lynx sign,’ and cord atrophy©may be helpful, the

590 limited specificity of these qualitative findings to HSP is very
important to recognize©. Proposed associations between radi-
ological cues and genotypes, such as thin corpus callosum in
SPG11 and SPG4 and the ‘ears-of-the-lynx sign’ in SPG11 and
SPG15 should be treated with caution and MR findings alone

595 should not guide genetic screening. Postmortem©studies in
HSP are notoriously scarce [6,7] despite their importance in
deciphering underlying processes and the preferential invol-
vement of specific anatomical regions.

From all the quantitative imaging modalities explored in
600 the academic setting, diffusion©tensor-based white matter

imaging yielded©the most unifying imaging signature, con-
sistently revealing bilateral corticospinal tract degeneration
and corpus callosum changes. There are other important

lessons to consider from©the advances in neuroimaging in
605MNDs [167]. Presymptomatic changes are not only important

to characterize©for academic reasons©but also so that phar-
macological intervention could be informedly timed. An
additional caveat of existing HSP imaging studies is the
limited scope of modalities; studies are either primarily

610structural, diffusion,©metabolic, or functional. Ideally, multi-
modal studies should be conducted, so the comparative
detection sensitivity of the various imaging methods can
be juxtaposed. The design of the few longitudinal studies
identified may also be improved. Ideally, enrollment© into

615longitudinal studies should be©relatively uniform with©regard
to symptom©duration, and only multi-timepoint longitudinal
studies are suitable for characterizing© linear versus non-
linear changes in integrity metrics and©exploring possible
ceiling and flooring effects. Only high-quality, multimodal,

620and multi-timepoint studies can adequately characterize©nat-
ural disease trajectories, anatomical propagation©patterns,
and progression rates. Ultimately, only robust longitudinal
studies can lead to the development of sensitive monitoring
markers with practical utility in future clinical trials. In future

625studies, patients should be carefully stratified by the under-
lying genotype as admixed HSP cohorts are unsuitable for
the development of©imaging-based biomarkers. Existing ima-
ging studies©on HSP overwhelmingly perform group-level
descriptive analyses to describe cohort-associated radiologi-

630cal traits. While this is of interest in the academic setting,
future studies should capitalize© on recent advances in
machine-learning and focus on the categorization©of indivi-
dual patient scans into clinically©relevant subgroups.

HSP imaging is an exciting and relatively©underexplored
635frontier of MND research. There are ample methodological

lessons to consider from imaging initiative in other neurode-
generative conditions. The implementations of novel imaging
sequences (QSM, spinal cord, DKI,©NODDI, etc.), pooled data
from multiple sites,©and meticulous stratification by genotype

640is likely to advance our understanding of pathophysiology in
HSP. Ultimately, advanced neuroimaging techniques have the
potential to be developed into viable clinical applications,
curtailing the diagnostic delay and serv©ing as noninvasive©
monitoring markers in future clinical trials.
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