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RESEARCH ARTICLE

Cerebellar degeneration in primary lateral sclerosis: an
under-recognized facet of PLS

EOIN FINEGAN1, WE FONG SIAH1, STACEY LI HI SHING1,
RANGARIROYASHE H. CHIPIKA1, ORLA HARDIMAN1 & PETER BEDE1,2

1Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland,
2Department of Neurology, St James’s Hospital Dublin, Dublin, Ireland

Abstract
While primary lateral sclerosis (PLS) has traditionally been regarded as a pure upper motor neuron disorder, recent clin-
ical, neuroimaging and postmortem studies have confirmed significant extra-motor involvement. Sporadic reports have
indicated that in addition to the motor cortex and corticospinal tracts, the cerebellum may also be affected in PLS.
Cerebellar manifestations are difficult to ascertain in PLS as the clinical picture is dominated by widespread upper motor
neuron signs. The likely contribution of cerebellar dysfunction to gait disturbance, falls, pseudobulbar affect and dysarth-
ria may be overlooked in the context of progressive spasticity. The objective of this study is the comprehensive character-
ization of cerebellar gray and white matter degeneration in PLS using multiparametric quantitative neuroimaging
methods to systematically evaluate each cerebellar lobule and peduncle. Forty-two patients with PLS and 117 demo-
graphically-matched healthy controls were enrolled in a prospective MRI study. Complementary volumetric and voxel-
wise analyses revealed focal cerebellar alterations instead of global cerebellar atrophy. Bilateral gray matter volume
reductions were observed in lobules III, IV and VIIb. Significant diffusivity alterations within the superior cerebellar ped-
uncle indicate disruption of the main cerebellar outflow tracts. These findings suggest that the considerable intra-cerebel-
lar disease-burden is coupled with concomitant cerebro-cerebellar connectivity disruptions. While cerebellar dysfunction
is challenging to demonstrate clinically, cerebellar pathology is likely to be a significant contributor to disability in PLS.
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Introduction

Despite landmark contributions, detailed postmor-
tem reports in PLS are scarce (1) and cerebellar
involvement is seldom addressed. One case report
described the cerebellum as “unremarkable” (2).
This is in contrast to ALS, where TDP-43 immu-
nopositive oligodendrocytes have been reported in
cerebellar white matter (3) and neuroimaging stud-
ies have consistently confirmed cerebellar involve-
ment (4–6). Despite the paucity of postmortem
reports in PLS, imaging studies have indicated
some degree of cerebellar involvement in vivo (7).
The cerebellum is thought to be one of the most
affected brain regions only outranked by cortico-
spinal tract and corpus callosum degeneration (8).
Cerebro-cerebellar functional connectivity altera-
tions (9,10), cerebellar peduncle diffusivity
changes (9,10), and spinocerebellar tract degener-
ation have been previously described (11). Marked

brainstem atrophy has also been demonstrated in
PLS, which may reflect loss of cerebellar connec-
tions (12,13). Cerebellar gray matter atrophy has
been observed in PLS, but the predilection for
specific cerebellar lobules is poorly characterized.
Cerebellar changes are considered to be more pro-
nounced in PLS compared with ALS, despite con-
trolling for symptom duration (14). The extensive
cerebellar involvement in PLS in comparison to
ALS, even after adjustments for thelonger symp-
tom duration, adds to the expanding evidence for
divergent brain signatures between PLS and ALS
(15). However, despite the compelling radiological
evidence, frank cerebellar ataxia is seldom
observed in PLS (10,11,16). Subtle cerebellar
signs may be masked by the manifestations of
severe corticospinal degeneration and systematic
cerebellar assessments are not routinely performed
in PLS, therefore the clinical impact of cerebellar
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dysfunction is likely to be underestimated. The
contribution of cerebellar pathology to poor bal-
ance and recurrent falls, a major cause of morbid-
ity in PLS, is unknown, but is likely to be
significant (16,17). Eye-movements abnormalities
have been consistently described in ALS and are
typically attributed to cerebellar pathology (18).
Abnormal saccadic eye-movements are also
described in PLS using eye-tacking methods (19).
Cerebellar pathology may also contribute to cogni-
tive deficits (20), bulbar impairment (21,22),
respiratory compromise (23) and behavioral
changes (24,25). Similar to ALS (26), executive
dysfunction, language deficits, impaired verbal flu-
ency and behavioral dysfunction have been consist-
ently observed in PLS (8,27,28). Analogous to
observations in ALS (29,30), deficits in social cog-
nition are also increasingly recognized in PLS
(31). While pseudobulbar affect (PBA) has trad-
itionally been attributed to corticobulbar discon-
nection and lobe frontal pathology (32,33), the
role of the cerebellum in the pathogenesis of PBA
is increasingly recognized (34–38). Despite emerg-
ing clinical, post mortem and radiological evidence
of cerebellar pathology in PLS (39), the predilec-
tion for specific cerebellar lobules and the prefer-
ential involvement of cerebellar peduncles have not
been systematically evaluated in a large cohort of
PLS patients (40). The comprehensive analysis of
regional cerebellar involvement may help to bridge
the gap between imaging and clinical observations
and provide further insights into the phenotype-
specific pathological patterns (41). The objective
of this study is the characterization of lobule-wise
cerebellar gray matter profiles in PLS, comple-
mented by region-of-interest morphometric, diffu-
sivity, and cerebellar peduncle integrity analyses.

Methods

Participants

Forty-two patients with PLS were recruited in this
prospective neuroimaging study, diagnosed accord-
ing to the new consensus diagnostic criteria (42).
MRI data from 117 demographically-matched
healthy controls were used for the interpretation of
their imaging data. Healthy controls were unre-
lated to the participating PLS patients and had no
established neurological or psychiatric diagnoses.
The study was approved by the Ethics Committee
of Beaumont Hospital, Dublin, Ireland and all par-
ticipants provided informed consent prior
to inclusion.

Magnetic resonance imaging

T1-weighted images were acquired on a 3 Tesla
Philips Achieva system using a 3D Inversion
Recovery prepared Spoiled Gradient Recalled echo

(IR-SPGR) pulse sequence and an 8-channel
receive-only head coil. The following pulse
sequence settings were implemented; field-of-view
(FOV): 256�256�160mm, slice orientation:
sagittal, spatial resolution: 1mm3, TR/TE ¼ 8.5/
3.9ms, TI ¼1060ms, flip angle ¼ 8�, SENSE fac-
tor ¼ 1.5. 32-direction DTI images were recorded
using a spin-echo echo planar imaging (SE-EPI)
pulse sequence with the following parameters: TR/
TE ¼ 7639/59ms, slice orientation: transverse
(axial), SENSE factor ¼ 2.5, b-values ¼ 0, 1100s/
mm2 FOV ¼ 245� 245� 150mm, spatial reso-
lution ¼ 2.5mm3, 60 slices were acquired with no
interslice gaps. Fluid attenuated inversion recovery
(FLAIR) images were also acquired for each par-
ticipant to rule out alternative or comorbid pathol-
ogies and assess for vascular white matter lesion
burden. FLAIR images were acquired using an
Inversion Recovery Turbo Spin Echo (IR-TSE)
sequence in axial orientation: TR/TE ¼ 11000/
125ms, TI ¼ 2800ms, 120� refocusing pulse,
FOV ¼ 230�183�150mm, spatial resolution ¼
0.65� 0.87�4mm, 30 slices with 1mm gap, with
flow compensation and motion smoothing and a
saturation slab covering the neck region. Imaging
data were evaluated in voxelwise analyses, based
on lobular volume and region-of-interest peduncle
diffusivity profiles.

Voxelwise gray matter analyses

Total intracranial volumes (TIV) were calculated
for each subject to be used as a covariate in subse-
quent morphometric analyses. As described in
detail previously (12,43), TIV was estimated by
linearly aligning each participant’s skull-stripped
brain image to the MNI152 standard, and the
inverse of the determinant of the affine registration
matrix was calculated and multiplied by the size of
the template. FMRIB’s FSL-FLIRT was utilized
for spatial registration and FSL-FAST for tissue
segmentation. TIV was calculated by the addition
of partial-volume gray matter, white matter and
CSF volumes. FMRIB’s FSL (44,45) was used for
voxelwise morphometry. The pre-processing steps
included skull-removal and tissue-type segmenta-
tion which were individually verified for each sub-
ject. Using the standard FMIRB pipeline, partial-
volume gray-matter data were aligned to MNI152
standard space and a study-specific GM template
was created to which the gray matter images from
each participant were co-registered (45). To evalu-
ate cerebellar gray matter changes in PLS com-
pared to healthy controls, permutation based non-
parametric inference was implemented using the
threshold-free cluster enhancement (TFCE)
method. The design matrix included study group
membership and the relevant demeaned covariates;
age, gender and total intracranial volumes.
Voxelwise analyses were restricted to the
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cerebellum as defined by “label 1” of the MNI
structural atlas. Resulting statistical outputs were
thresholded at p< 0.01 FWE/TFCE and the
Diedrichsen probabilistic atlas was used as under-
lay to present the localization of statistically signifi-
cant clusters (46).

Cerebellar tract-wise white matter analyses

Raw diffusion data first underwent eddy current
corrections and skull removal (47) before a tensor
model was fitted to generated maps of fractional
anisotropy (FA) and radial diffusivity (RD). The
standard FMRIB’s Tract-based Statistics pipeline
was used for non-linear registration, skeletoniza-
tion of FA images, creation of a study-specific
mean FA mask and also for the registration and
skeletonization of RD images (48). Permutation-
based non-parametric statistics was used to charac-
terize the voxelwise diffusivity profile of PLS
patients in contrast to healthy controls. Covariates
included age and gender. The threshold-free clus-
ter enhancement (TFCE) approach was imple-
mented and resulting outputs were thresholded at
p<0.01 corrected for family-wise error (FWE).

Cerebellar lobule volumetry

The cerebellum was parcellated using a multi-atlas
segmentation approach (49). The pre-processing
steps included T1w data “denoising” in native
space, corrections for inhomogeneity, affine regis-
tration to Montreal Neurological Institute (MNI)
space, inhomogeneity corrections in MNI space,
cerebellar cropping, low dimensional non-linear
registration estimation, and intensity normaliza-
tion. A patch-based parcellation algorithm was
implemented to generate cerebellar volume metrics
for each lobule in each hemisphere (50). As a
quality control step, anatomical segmentation and
tissue-type parcellation accuracy was individually
checked for each subject. Volumetric values were
extracted for the following structures: Lobules I-II,
III, IV, V, VI, VIIB, VIIIA, VIIIB, IX, X, Crus I
and Crus II. Following verification of data
assumptions, analysis of covariance (ANCOVA)
was performed to compare the cerebellar profile of
PLS patients to controls with the following covari-
ates: total intracranial volume, age and sex.

Cerebellar peduncles

The integrity of the cerebellar peduncles was
assessed in region-of-interest (ROI) analyses. The
relevant labels of the 1mm JHU-ICBM atlas were
used to generate masks for inferior (ICP), middle
(MCP) and superior cerebellar peduncles (SCP).
As per the original atlas, separate right and left
labels were used for the inferior and superior
peduncles and a single label generated for the mid-
dle cerebellar peduncle. Average FA and RD

values were then extracted from the merged ske-
letonized diffusion data using these anatomical
masks for subsequent statistical analyses.
ANCOVA was used to contrast the diffusivity val-
ues in the cerebellar peduncles in PLS patients to
healthy controls using age and sex as covariates.

Results

The PLS cohort (mean age: 60.95±9.7, 27 males)
and healthy controls (mean age: 63.7±8.2, 70
males) were matched for age (p¼ 0.079), gender
(v2¼0.105, p¼0.74), education (p¼ 0.27) and
handedness (v2¼0.051, p¼ 0.822).

Voxelwise findings

Voxelwise gray matter analysis identified bilateral
morphometric changes in lobules V, VI and VIIIb
as well as in Crus 1. Alterations were largely sym-
metric with slight right-sided predominance
(Figure 1).

Symmetric white matter degeneration was
detected by tract-wise analyses. FA reductions
were detected in lobules I-IV, V, VI, and in the
bilateral inferior and superior cerebellar peduncles
and in the vermis at p<0.01 FWE (Figure 2).
Increased RD was detected in the middle and
superior cerebellar peduncles, in Crus II, the ver-
mis and lobule VI at p< 0.01 FWE (Figure 3).

Cerebellar lobule volumes

Total cerebellar gray matter volume was signifi-
cantly reduced bilaterally in the PLS group in
comparison with controls. At a lobule-level, signifi-
cant bilateral gray matter volume reductions were
identified in lobules III, IV and VIIB, while signifi-
cant reductions were also identified in Crus II
(left) and VIIIA (right) (Table 1). To highlight the
preferential atrophy of specific lobules, the age-,
sex- and TIV-corrected estimated marginal means
of cerebellar lobule volumes were plotted in radar
plots with reference to the control data defined as
100% (Figure 4).

Cerebellar peduncle integrity

Fractional anisotropy reductions were identified in
the bilateral inferior cerebellar peduncles.
Increased bihemispheric radial diffusivity was
detected in the superior and inferior cerebellar
peduncles (Table 2).

Discussion

The dedicated analysis of cerebellar disease burden
in PLS confirms selective cerebellar lobule involve-
ment in PLS. The greatest volume loss was identi-
fied in lobules III, IV and VIIb bilaterally. Our
findings point to focal instead of global cerebellar
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degeneration in PLS, and demonstrate that intra-
cerebellar pathology is accompanied by cerebellar
peduncle degeneration. From a functional anatomy
perspective, the anterior lobe of the cerebellum
(lobules I-V), along with the adjacent lobule VI

are predominantly associated with cerebellar motor
function (24), whereas the posterior lobe is classic-
ally linked to cognitive and affective functions
(25). Within the cerebellar hemispheres, white
matter pathology showed a predilection for the

Figure 1. Patterns of cerebellar gray matter atrophy in PLS are shown in blue color with reference to healthy controls at p<0.01 FWE
corrected for age, sex and TIV. MNI coordinates are provided for sagittal (x), coronal (y) and axial views (z). The Diedrichsen
probabilistic cerebellar atlas is presented as underlay to aid localization. The anatomical labels of atlas are presented at the bottom.
Radiological convention used, P – Posterior, A – Anterior, Lt – Left, Rt – Right.
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anterior lobes with the preferential involvement
lobules III, IV and V, as well as the adjacent lob-
ule VI, within the posterior lobe. Gray matter
involvement was more widespread throughout the

cerebellum. Both gray and white matter atrophy
was identified in lobules III and IV, bilaterally.
Multiple studies have linked pathology in these
lobules to gait ataxia (51,52). Similarly, converging

Figure 2. Patterns of fractional anisotropy reductions in PLS are presented in blue color with reference to healthy controls at p<0.01
FWE corrected for age and sex. The Diedrichsen probabilistic cerebellar atlas and the superior cerebellar peduncle (SCP – red), middle
cerebellar peduncle (MCP – white) and inferior cerebellar peduncle (ICP – green) labels of the ICBM-DTI-81 white-matter atlas are
presented as underlay to aid localization. The anatomical labels of atlases are presented at the bottom. Radiological convention used, P
– Posterior, A – Anterior, Lt – Left, Rt – Right. The MNI coordinates of the views in the four rows are the following (x/y/z): 5/-50/-22,
6/-45/-26, 5/-59/-27, -12/-66/-25.

Cerebellar degeneration in primary lateral sclerosis 5



evidence attributes cerebellar dysarthria to involve-
ment of lobules V and VI, both of which showed
significant bilateral white matter alterations in our
PLS cohort (25,51).

While cerebellar motor regions were signifi-
cantly affected on volumetric, diffusivity and
voxel-based gray matter analyses, results were less
concordant in lateral regions which are particularly
linked to cognitive function such as Crus I and
Crus II. Mild, significant volume loss was detected
in Crus II in the left hemisphere only (53).
Similarly, lobule IX integrity, implicated in cere-
bellar cognitive function did not differ significantly
from healthy controls on any metric (25,52,53).

The analyses of white matter diffusion metrics
highlight the involvement of the cerebellar
peduncles. The superior, middle, and inferior cere-
bellar peduncles provide the structural connection

between the cerebellum and the brainstem. Our
region-of-interest diffusivity analyses confirmed
increased RD in the bilateral superior and inferior
cerebellar peduncles and FA reductions in the
inferior cerebellar peduncles. Additionally, our
voxelwise analyses detected radial diffusivity altera-
tions in the middle cerebellar peduncles. The
superior cerebellar peduncles are the primary out-
put tracts of the cerebellum connecting the cere-
bellar nuclei to the contralateral cortex via the
ventral lateral nuclei, although they also contain
spinocerebellar afferents (54,55). It is noteworthy,
that the ventral lateral thalamic nuclei have previ-
ously been found to be affected in PLS (56,57).
Superior cerebellar peduncle involvement has been
described in a previous study of 3 PLS patients, in
whom significantly lower FA was recorded in com-
parison with controls (58). Cerebellar peduncle

Figure 3. Patterns of increased radial diffusivity in PLS are shown in yellow color with reference to healthy controls at p<0.01 FWE
corrected for age and sex. The Diedrichsen probabilistic cerebellar atlas and the superior cerebellar peduncle (SCP – red), middle
cerebellar peduncle (MCP – white) and inferior cerebellar peduncle (ICP – green) labels of the ICBM-DTI-81 white-matter atlas are
presented as underlay to aid localization. Radiological convention used, P – Posterior, A – Anterior, Lt – Left, Rt – Right. The MNI
coordinates of the views in the four rows are the following (x/y/z): 7/-72/-32, -12/-37/-37, 6/-40/-26, -1/-68/-26.
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white matter abnormalities have been consistently
reported in ALS (59–61) and linked to impaired
cerebro-cerebellar connectivity, including projec-
tions to the primary and supplementary motor cor-
tices (59). MCP integrity changes have also been
consistently described in ALS (59,62). The
involvement of the MCP has been demonstrated
in PLS patients and has been linked to pseudobul-
bar affect (PBA), supporting the concept of cere-
bellar deafferentation in the pathogenesis of
PBA (35).

The identification of selective cerebellar atro-
phy raises important clinical questions. The appre-
ciation of subtle cerebellar signs in PLS is likely to
be confounded by the marked upper motor neuron
signs dominating the clinical landscape of PLS.
The contribution of cerebellar dysfunction to gait
disturbance, falls, dysarthria and dysphagia needs
to be carefully considered in multidisciplinary
interventions. The recognition that, similar to ALS
(63,64), extra-pyramidal and cerebellar dysfunc-
tion may also contribute to motor disability in PLS

Table 1. Cerebellar lobule gray matter volumes in PLS and controls adjusted for age, sex, total intracranial volumes.

Cerebellar region Study group Estimated marginal mean Standard error ANCOVA Sig. (p)

Total Cerebellum (right) HC 47.721702 0.369059 .019*

PLS 45.955560 0.630152
Total Cerebellum (left) HC 47.669366 0.361897 .009*

PLS 45.733854 0.617924
Lobules I–II (right) HC 0.034246 0.000866 .754

PLS 0.033698 0.001478
Lobules I–II (left) HC 0.029409 0.000968 .294

PLS 0.027353 0.001653
Lobule III (right) HC 0.492044 0.009323 .016*

PLS 0.446228 0.015919
Lobule III (left) HC 0.501364 0.010294 .037*

PLS 0.457689 0.017577
Lobule IV (right) HC 1.936520 0.026081 <.001*

PLS 1.746658 0.044531
Lobule IV (left) HC 2.071227 0.030074 .001*

PLS 1.867074 0.051350
Lobule V (right) HC 3.289151 0.042784 .077

PLS 3.135760 0.073051
Lobule V (left) HC 3.566098 0.042539 .113

PLS 3.429295 0.072633
Lobule VI (right) HC 7.847142 0.098904 .174

PLS 7.574638 0.168875
Lobule VI (left) HC 7.870016 0.096677 .153

PLS 7.589976 0.165071
Crus I (right) HC 11.080734 0.147747 .912

PLS 11.047597 0.252272
Crus I (left) HC 11.080363 0.153723 .266

PLS 10.734727 0.262475
Crus II (right) HC 7.067282 0.108867 .081

PLS 6.681765 0.185886
Crus II (left) HC 6.901220 0.100807 .043*

PLS 6.487647 0.172123
Lobule VIIB (right) HC 4.207641 0.058063 <.001*

PLS 3.786151 0.099140
Lobule VIIB (left) HC 4.035672 0.056800 <.001*

PLS 3.603847 0.096983
Lobule VIIIA (right) HC 4.831938 0.057846 .030*

PLS 4.576008 0.098769
Lobule VIIIA (left) HC 4.901696 0.061875 .412

PLS 4.799118 0.105648
Lobule VIIIB (right) HC 3.395932 0.059408 .801

PLS 3.426117 0.101437
Lobule VIIIB (left) HC 3.317364 0.050465 .633

PLS 3.366015 0.086167
Lobule IX (right) HC 2.832671 0.044305 .794

PLS 2.809288 0.075648
Lobule IX (left) HC 2.668338 0.044368 .904

PLS 2.657517 0.075756
Lobule X (right) HC 0.581185 0.006670 .501

PLS 0.572123 0.011390
Lobule X (left) HC 0.582141 0.006502 .705

PLS 0.577179 0.011101
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(65) has potential implications for rehabilitation
efforts, fall prevention and individualized occupa-
tional- and physio-therapy. The nuanced charac-
terization of PLS-specific cerebellar signatures may
also aid the development of classification algo-
rithms in MND to correctly categorize early-stage
patients into diagnostic and prognostic catego-
ries (66–70).

The chronology of cerebral and cerebellar
degeneration in PLS is currently unclear as there is
a scarcity of published longitudinal imaging studies
in PLS (71–73). However, longitudinal ALS

studies suggest that progressive cerebellar degener-
ation may be a relatively late feature (74–76).
Functional studies of ALS (77,78) have postulated
that the cerebellum may temporarily compensate
for the degeneration of the primary motor cortex,
but this has not been confirmed by post mortem
and high-resolution structural studies (4,79).
Increased cerebellar gray matter volume and
increased white matter organization have been
described in adult poliomyelitis survivors which
were interpreted as putative compensatory adapta-
tion to spinal cord insult in infancy (80,81).

Figure 4. Selective cerebellar lobule degeneration in PLS. Age-, sex- and total intracranial volume corrected estimated marginal means
of cerebellar lobule volumes are plotted in both hemispheres in radar plots with reference to the control data defined as 100%.
Significant volumetric differences are flagged with a green star.

Table 2. Cerebellar peduncle integrity adjusted for age, gender.

Region Study group Estimated marginal mean Standard error ANCOVA Sig. (p)

Fractional Anisotropy (FA)
Superior peduncle (left) HC 0.624722 0.003738 .209

PLS 0.615415 0.006293
Superior peduncle (right) HC 0.615139 0.003796 .246

PLS 0.606419 0.006391
Middle peduncle HC 0.516641 0.003052 .754

PLS 0.514754 0.005139
Inferior peduncle (left) HC 0.509868 0.003437 .056

PLS 0.496806 0.005787
Inferior peduncle (right) HC 0.505411 0.003694 .004*

PLS 0.484106 0.006220
Radial Diffusivity (RD)
Superior peduncle (left) HC 0.000452 0.000005 .012*

PLS 0.000477 0.000009
Superior peduncle (right) HC 0.000469 0.000005 .044*

PLS 0.000490 0.000009
Middle peduncle HC 0.000441 0.000003 .468

PLS 0.000446 0.000006
Inferior peduncle (left) HC 0.000472 0.000004 .017*

PLS 0.000492 0.000007
Inferior peduncle (right) HC 0.000476 0.000004 .002*

PLS 0.000503 0.000007
PLS 0.000701 0.000007

Bold p-values with asterisk indicate statistically significant changes.
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Despite the contribution of emerging functional
modalities such as EEG and MEG to MND
research (78,82,83), these methods typically only
acquire and analyze supratentorial data. Similarly,
while wet biomarkers may be sensitive in tracking
progressive neurodegenerative change in various
MND phenotypes (84–86), these are anatomically
nonspecific and provide no additional information
relating to cerebellar change. Infratentorial imaging
and targeted post mortem assessments are cur-
rently the two viable approaches to characterize
infratentorial disease burden patterns in PLS.

This study is not without limitations. The
cross-sectional design precludes the assessment of
the chronology of cerebral and cerebellar degener-
ation and its relationship with symptom duration.
Longitudinal studies are required to elucidate the
timeline of infratentorial degeneration and verify
putative compensatory processes. We used the
ICBM152 template to register our structural data
to MNI standard space, but the new spatially
unbiased infra-tentorial template (SUIT) promises
to preserve the anatomical detail of the cerebellum
to a higher degree (87). Finally, pathological valid-
ation is required to uncover the cellular and sub-
cellular hallmarks of cerebellar degeneration
in PLS.

Conclusions

PLS is associated with considerable cerebellar gray
and white matter degeneration with the preferen-
tial involvement of specific cerebellar lobules.
Cerebellar pathology in PLS is likely to contribute
to the heterogeneity of manifestations observed
clinically. PLS should no longer be solely associ-
ated with pyramidal tract and motor cortex degen-
eration given the compelling evidence of
concomitant extra-motor, extra-pyramidal and
cerebellar pathology.
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