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COMMENTARY

The neuroradiology of upper motor neuron degeneration: PLS,
HSP, ALS

STACEY LI HI SHING & PETER BEDE

Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland

The neuroimaging literature of motor neuron dis-
eases is dominated by studies in ALS (1,2). There
is a relative paucity of quantitative MRI studies in
other motor neuron diseases despite the consider-
able disability, lack of disease modifying therapies
and diagnostic challenges associated with most
MNDs (3). Radiological reports in primarily lateral
sclerosis, Kennedy’s disease, hereditary spastic
paraplegia and spinal muscular atrophy are domi-
nated by case series, and multimodal quantitative
protocols have only been recently implemented in
non-ALS MNDs (4–6).

In this edition of Amyotrophic Lateral Sclerosis
and Frontotemporal Degeneration, Navas-S�anchez
et al. present an intriguing study of motor cortex
and corticospinal tract (CST) degeneration in her-
editary spastic paraparesis type 4 (SPG4) (7). The
authors used a multiparametric imaging approach
to evaluate pyramidal tract degeneration using
both fixel-based analyses and probabilistic tractog-
raphy. The authors identify clinico-radiological
correlations and detect inferior-predominant CST
degeneration. The study offers multiple learning
points which are relevant to other MNDs. While
correlations between CST metrics and motor dis-
ability are confounded by co-existing lower motor
neuron degeneration in ALS (8), these are pertin-
ent to upper motor neuron predominant disorders
such as PLS and HSP (9). Fixel-based analysis
(FBA) is a relatively novel framework which offers
integrity indices for single fiber populations and
permits the evaluation of crossing fibers. White
matter degeneration in MND is typically evaluated
by tract-based methods (10), template-based
approaches (11), or tractography (12) which makes
the appraisal of crossing fibers challenging. Non-
Gaussian diffusion protocols, such as diffusional
kurtosis imaging (DKI), q-space imaging (QSI) or
neurite orientation dispersion and density imaging

(NODDI) have only been recently applied to
MND datasets and have already contributed
important insights (13–15). Furthermore, CST
changes in MND are often preferentially assessed
in the posterior limb of the internal capsule, and
the segmental profile of the pyramidal tracts are
seldom systemically characterized from the super-
ior corona radiata to the spinal cord (16–19).

A number of radiological cues are associated
with HSP on standard clinical imaging, such as
the thinning of the corpus callosum, spinal cord
cross-sectional area reduction, ventricular enlarge-
ment and periventricular T2/FLAIR signal hyper-
intensities. Characteristic bilateral signal change in
the forceps minor in SPG11/SPG15 has been
referred to as the “ear-of-the-lynx sign” which is
best seen on axial views at the frontal horn of the
lateral ventricles. The specificity of qualitative cues
in HSP however is contentious (20); corpus cal-
losum thinning and forceps minor degeneration
are also commonly observed in other motor neu-
ron diseases (21).

Cortical change in SPG4 has been previously
investigated by voxel-based morphometry (22) and
cortical thickness analyses (23). White matter
degeneration in SPG4 has been evaluated by tract-
based special statistics (TBSS) (22), voxel-based
FA analyses (24), and tractography (23). A con-
sensus finding of these studies is that CST changes
are more readily detected than the more elusive
primary motor cortex atrophy. In addition to
standard grey and white matter techniques, a var-
iety of volumetric approaches (24), thalamus imag-
ing (25), resting-state functional MRI (26),
magnetic resonance spectroscopy (27) and spinal
cord morphometry (23) have also been applied in
SPG4. PET studies often capture metabolic
changes beyond the motor cortex including the
involvement of frontotemporal regions (28).
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Despite sample size limitations, and the divergent
methodologies of existing SPG4 studies, pyramidal
tract degeneration, motor cortex thinning, thal-
amus atrophy, cerebellar involvement and fronto-
temporal changes are relatively consistent
observations.

One of the main drawbacks of single-phenotype
studies is that imaging findings are identified based
on comparisons to healthy controls and the identi-
fied patterns are often interpreted as a “signature”
of the cohort. The specificity of these findings
however can only be ascertained if multiple pheno-
types and disease controls are also included in
comparative analyses. This is a common challenge
of MND imaging, where low-incidence phenotypes
often show similar anatomical patterns of degener-
ation. Cerebral changes in PLS for example are
difficult to distinguish from ALS; both exhibiting
CST, corpus callosum, cerebellar and some degree
of frontotemporal change (29–31). Only the
departure from “single group versus controls”
study designs and the inclusion of several relevant
cohorts will permit the comparative characteriza-
tion of imaging traits and enable the definition of
phenotype-specific signatures. Distilling pheno-
type-specific features can then be utilized in classi-
fication algorithms to aid the categorization of
single subjects (32,33).

Imaging initiatives across the spectrum of
MNDs offer invaluable learning opportunities and
resourceful imaging protocols can be readily
adopted and developed to be utilised in other
MND phenotypes. Concepts in study design and
data interpretation frameworks are also largely
transferrable. Advances in academic imaging in
MND are likely to gradually filter down to prag-
matic clinical and pharmaceutical trial
applications.
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