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A B S T R A C T   

Motor neuron disease is an umbrella term encompassing a multitude of clinically heterogeneous phenotypes. The early 
and accurate categorisation of patients is hugely important, as MND phenotypes are associated with markedly 
different prognoses, progression rates, care needs and benefit from divergent management strategies. The catego
risation of patients shortly after symptom onset is challenging, and often lengthy clinical monitoring is needed to 
assign patients to the appropriate phenotypic subgroup. In this study, a multi-class machine-learning strategy was 
implemented to classify 300 patients based on their radiological profile into diagnostic labels along the UMN-LMN 
spectrum. A comprehensive panel of cortical thickness measures, subcortical grey matter variables, and white mat
ter integrity metrics were evaluated in a multilayer perceptron (MLP) model. Additional exploratory analyses were 
also carried out using discriminant function analyses (DFA). Excellent classification accuracy was achieved for 
amyotrophic lateral sclerosis in the testing cohort (93.7%) using the MLP model, but poor diagnostic accuracy was 
detected for primary lateral sclerosis (43.8%) and poliomyelitis survivors (60%). Feature importance analyses 
highlighted the relevance of white matter diffusivity metrics and the evaluation of cerebellar indices, cingulate 
measures and thalamic radiation variables to discriminate MND phenotypes. Our data suggest that radiological data 
from single patients may be meaningfully interpreted if large training data sets are available and the provision of 
diagnostic probability outcomes may be clinically useful in patients with short symptom duration. The computational 
interpretation of multimodal radiology datasets herald viable diagnostic, prognostic and clinical trial applications.  

Abbreviations: AD, axial diffusivity; ALS, amyotrophic lateral sclerosis; ALSFRS-r, revised amyotrophic lateral sclerosis functional rating scale; ANN, artificial 
neural network; ASO, antisense oligonucleotides; ATR, Anterior Thalamic Radiation; AUC, area under the curve; C9orf72, chromosome 9 open reading frame 72; 
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1. Introduction 

Motor neuron diseases (MND) encompass a multitude of clinically 
heterogeneous conditions with strikingly different progression rates, 
survival and disability profiles [1–4]. Initial symptoms of MND pheno
types may be very similar and often only careful longitudinal follow-up 
helps to categorise individual patients into the appropriate diagnostic 
subgroups [5,6]. Patients initially presenting with lower limb spasticity 
and subtle pseudobulbar affect for example may represent ‘UMN-pre
dominant ALS’ and these patients may progress to develop overt LMN 
sings consistent with ALS, or, they may retain a relatively pure UMN- 
predominant clinical profile long after symptom onset, consistent with 
PLS [7,8]. The relevance of accurately classifying single participants 
cannot be underestimated; these diagnostic labels are associated with 
markedly different survival outcomes, care needs, and accurate pheno
typic classification is also indispensable for stratification for clinical 
trials [9–13]. The traditional strategy in the clinical setting is to follow 
patients carefully over time. Subsequent diagnostic criteria for PLS for 
example have all included a minimum symptom duration criteria before 
the diagnosis could be established [6,14,15]. UMN vs. LMN predomi
nance is just one of the many dimensions of disease heterogeneity in 
MND. The degree of cognitive impairment, difference in progression 
rates, bulbar versus limb disability predominance, genetic status, the 
presence of apathy, deficits in social cognition, extra-pyramidal and 
cerebellar involvement are other important facets of disease heteroge
neity [16–18]. The precision categorisation of individuals with MND has 
important ramifications for individualised multidisciplinary care, 
advising caregivers, resource allocation, rehabilitation and recruitment 
into relevant clinical trials [19]. From a therapeutic perspective, there is 
a marked shift from the notion of ‘one-drug-for-all’ to precision, geno
type- and phenotype-specific therapeutic strategies. Recent clinical tri
als of antisense oligonucleotides (ASO) exemplify this important trend. 
The categorisation of individual MND patients currently relies on the 
careful observation of cardinal clinical features, progression rates and 
the consideration of supporting neurophysiological and neuropsycho
logical findings [20–24]. In the clinical setting, neuroimaging has a 
limited role in confirming a suspected diagnosis or categorising patients 
with MND . In contrast, academic studies have consistently demon
strated the biomarker potential of computational imaging in ascertain
ing genotype-associated features, tracking progressive changes and 
meaningfully evaluating the entire neuroaxis from cortical changes, 
through infratentorial disease-burden to spinal cord alterations [25–28]. 
In contrast to group-level analyses [29], there has also been notable 
progress in interpreting single-patient datasets in MND, including 
epidemiology data, clinical variables and neuroimaging data [30–32]. 
Machine-learning (ML) algorithms have the potential to categorise in
dividual patients into diagnostic, phenotypic or prognostic subgroups if 
large, uniformly acquired datasets are available for model training. 
Single-centre ML initiatives in MND often suffer from sample size limi
tations which can lead to model overfitting and data compiled from 
multiple sites are vulnerable to acquisition inconsistencies and missing 
data. A common shortcoming of early ML studies in MND is binary 
classification into ALS versus a healthy control group [33] instead of 
implementing multi-class models with clinically relevant output labels 
[34]. Another stereotyped drawback of classification studies is model 
testing on patients with an established diagnosis, often with long 
symptom duration, instead of model validation on ‘early-stage patients’ 
or patients with a suspected diagnosis. Finally, most ML studies in MND 
implement a single model instead of comparing the performance of 
several models on the same cohort of patients. Accordingly, the objec
tive of this pilot study is the multi-class classification of patients with 
MND based on imaging data using a dual approach; a supervised model 
and an artificial neural network framework. An additional objective of 
the study is the classification of PLS and ALS patients with relatively 
short symptom duration to scrutinise the efficiency of a proposed clas
sification strategy. 

2. Methods 

2.1. Participants 

A total of 300 participants, 215 patients with amyotrophic lateral 
sclerosis (‘ALS’), 42 patients with primary lateral sclerosis (‘PLS’) and 43 
poliomyelitis survivors (‘PMS’) were included in a prospective, single- 
centre study. In accordance with the Ethics Approval of this research 
project (Beaumont Hospital, Dublin, Ireland), all participants gave 
informed consent. Exclusion criteria included comorbid neoplastic, 
paraneoplastic or neuroinflammatory diagnoses, prior cerebrovascular 
events, and known traumatic brain injury. Participating ALS patients 
were diagnosed according to the revised El Escorial criteria and PLS 
patients were diagnosed according to the new consensus criteria [35]. 

2.2. Magnetic resonance imaging 

A uniform imaging protocol was used on a 3 Tesla Philips Achieva 
Magnetic resonance (MR) platform. T1-weighted (T1w) images were 
acquired with a 3D Inversion Recovery prepared Spoiled Gradient 
Recalled echo (IR-SPGR) sequence with the following parameters: 
spatial resolution of 1 mm3, field-of-view (FOV) of 256 × 256 × 160 
mm, flip angle = 8◦, SENSE factor = 1.5, TR/TE = 8.5/3.9 ms, TI =1060 
ms. Diffusion tensor images (DTI) were acquired using a spin-echo echo 
planar imaging (SE-EPI) pulse sequence with a 32-direction Stejskal- 
Tanner diffusion encoding scheme; 60 slices with no interslice gap, 
spatial resolution = 2.5 mm3, FOV = 245 × 245 × 150 mm, TR/TE =
7639 / 59 ms, SENSE factor = 2.5, b-values = 0, 1100 s/mm2, spectral 
presaturation with inversion recovery (SPIR) fat suppression and dy
namic stabilisation. Fluid-attenuated inversion recovery (FLAIR) images 
were acquired with an Inversion Recovery Turbo Spin Echo (IR-TSE) 
sequence to rule out comorbid inflammatory or vascular pathologies. 
Imaging data from all participants were clinically reviewed for inci
dental findings prior to inclusion in quantitative analyses. Subsequent to 
radiological review, a comprehensive panel of imaging metrics, con
sisting of cortical grey matter indices, subcortical grey matter variables, 
and white matter integrity measures were systematically retrieved from 
an extensive list of anatomical regions in each participant. Following 
standardised pre-processing steps and spatial registration, 28 volume 
values, 68 cortical thickness measures and 120 white matter indices 
were uniformly retrieved from each subject; a total of 216 imaging 
measures. 

2.3. Cortical thickness values 

The standard pipeline of the FreeSurfer image analysis suite [36] was 
used for pre-processing, including non-parametric non-uniform in
tensity normalization, affine registration to the MNI305 atlas, intensity 
normalization, skull striping, automatic subcortical segmentation, linear 
volumetric registration, neck removal, tessellation of the grey matter- 
white matter boundary, surface smoothing, inflation to minimize 
metric distortion, and automated topology correction [37]. Subsequent 
to pre-processing, the anatomical labels of the Desikan-Killiany atlas 
[11] were utilised to estimate average cortical thickness in the following 
cortical regions in the left and right cerebral hemispheres separately; (1) 
banks superior temporal sulcus, (2) caudal anterior-cingulate cortex, (3) 
caudal middle frontal gyrus, (4) cuneus cortex, (5) entorhinal cortex, (6) 
frontal pole, (7) fusiform gyrus, (8) inferior parietal cortex, (9) inferior 
temporal gyrus, (10) insula, (11) isthmus–cingulate cortex, (12) lateral 
occipital cortex, (13) lateral orbitofrontal cortex, (14) lingual gyrus, 
(15) medial orbital frontal cortex, (16) middle temporal gyrus, (17) 
parahippocampal gyrus, (18) paracentral lobule, (19) pars opercularis, 
(20) pars orbitalis, (21) pars triangularis, (22) pericalcarine cortex, (23) 
postcentral gyrus (24) posterior-cingulate cortex, (25) precentral gyrus, 
(26) precuneus cortex, (27) rostral anterior cingulate cortex, (28) rostral 
middle frontal gyrus, (29) superior frontal gyrus, (30) superior parietal 
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cortex, (31) superior temporal gyrus, (32) supramarginal gyrus, (33) 
temporal pole, (34) transverse temporal cortex. 

2.4. Volume metrics 

A Bayesian segmentation algorithm was utilised to parcellate the 
brainstem into the medulla oblongata, pons and midbrain, which relies 
on a probabilistic brainstem atlas derived from 49 scans [38]. A total of 
28 volume variables were estimated from each pre-processed T1- 
weighted dataset: (1) left cerebellar white matter volume, (2) left 
cerebellar cortex volume, (3) left thalamus volume, (4) left caudate 
volume, (5) left putamen volume, (6) left pallidum volume, (7) left 
hippocampus volume, (8) left amygdala volume, (9) left accumbens 
volume, (10) right cerebellar white matter volume, (11) right cerebellar 
cortex volume, (12) right thalamus volume, (13) right caudate volume, 
(14) right putamen volume, (15) right pallidum volume, (16) right 
hippocampus volume, (17) right amygdala volume, (18) right accum
bens volume, (19) posterior corpus callosum volume, (20) middle corpus 
callosum volume, (21) central corpus callosum volume, (22) mid- 
anterior corpus callosum volume, (23) anterior corpus callosum vol
ume, (24) medulla volume, (25) pons volume, (26) superior cerebellar 
peduncle volume, (27) midbrain volume, (28) total intracranial volume. 
Each volume value was converted as a percentage of the subject’s total 
intracranial volume (TIV) to account for TIV variations. 

2.5. White matter indices 

The diffusivity profiles of 30 white matter regions were evaluated. 
Following quality control, eddy current corrections and skull removal 
were applied to DTI data before a tensor model was fitted to generate 
diffusivity maps of axial diffusivity (AD), fractional anisotropy (FA), 
mean diffusivity (MD), and radial diffusivity (RD). FMRIB’s software 
library’s tract-based statistics (TBSS) module was implemented for the 
non-linear registration of DTI images, skeletonisation and the creation of 
a mean FA mask. The study-specific white matter skeleton was masked 
in MNI space by the anatomical labels of the following white matter 
regions: left & right anterior thalamic radiation, left & right cerebellar 
white matter skeleton, left & right cingulum, left & right corticospinal 
tract, left & right external capsule, forceps major, forceps minor, fornix, 
left & right inferior cerebellar peduncle, left & right inferior fronto- 
occipital fasciculus, left & right inferior longitudinal fasciculus, left & 
right medial lemniscus, middle cerebellar peduncle, left & right poste
rior thalamic radiation, left & right superior cerebellar peduncle, left & 
right superior longitudinal fasciculus, left & right uncinate fasciculus. To 
generate spatial masks for the cerebellar peduncles, medial lemniscus, 
external capsule and posterior thalamic radiation, the labels of the 
ICBM-DTI-81 white-matter atlas [39,40] were used. To create masks for 
the forceps major, forceps minor, anterior thalamic radiation, uncinate, 
superior and inferior longitudinal fasciculi, cingulum, corticospinal 
tracts, and inferior fronto-occipital fasciculi, the labels of the JHU white- 
matter tractography atlas [41,42] were utilised. Label 2 of the MNI 
probabilistic atlas [43,44] was used to generate a white mask for the 
cerebellum and FMRIB’s fornix template [45] was used to evaluate the 
diffusivity profile of the fornix. 

2.6. Statistical interpretation 

First, a multilayer perceptron model was implemented with one 
hidden layer containing 12 nodes (units). The hidden layer activation 
function was hyperbolic tangent and a batch-type training approach was 
used with a gradient descent optimisation algorithm. The diagnosis 
(ALS, PLS, PMS) was set as dependent variable, and retrieved imaging 
measures designated as covariates. Imaging values were rescaled by 
standardisation. The available data (n = 300) was split into a training 
sample (n = 206, 68.7%) and testing sample (n = 94, 31.3%). The 
predicted pseudo-probability of each diagnostic group was plotted in a 

bar chart to illustrate the accuracy of diagnostic classification and 
receiver operating characteristic curves (ROC) were also plotted. The 
synaptic weight estimates for each dependent variable from the per
ceptron model was exported to an extensible markup language (XML 
(PMML)) file which was subsequently applied to an independent sample 
of scans encompassing data from patients with short symptom duration. 
To rank the significance of individual imaging metrics in predicting 
group membership, an independent variable importance analysis was 
also performed. IBM’s SPSS version 25 was utilised for statistical 
modelling. In a supplementary exploratory analysis, discriminant func
tion analyses (DFA) were also run to evaluate classification accuracy in 
juxtaposition to ANN outcomes. Given the associations between the four 
diffusivity metrics, only FA was evaluated in each white matter regions 
and AD, MD and RD were not considered as input variables in the DFA. 
In addition to FA, volume and cortical metrics were included as initial 
input variables. All 300 participants were included in the original and 
cross-validated sample. First, standard descriptive statistics were run to 
calculate the mean and standard deviation of each input variable for in 
each group. Then, tests of equality of group means were performed to 
measure each independent variable’s potential before the model is 
created. This is derived from a one-way ANOVA for the independent 
variable using the grouping variable as the factor. A significance value 
greater than 0.10 suggests that the variable is unlikely to contribute 
meaningfully to the model. Wilks’ lambda is an alternative measure of a 
variable’s potential, smaller values indicating superior discriminating 
potential. Subsequently, box’s test of equality of covariance matrices 
was performed to test the assumption of homogeneity of variances and 
covariances. Only variables passing the tolerance criteria were entered 
in the final DFA model. 

3. Results 

The three groups, (1) amyotrophic lateral sclerosis (‘ALS’, n = 215, 
age: 62.953 ± 10.6, 141 male, 203 right handed), (2) primary lateral 
sclerosis (‘PLS’, n = 42, age: 61.45 ± 9.65, 26 male, 38 right handed) 
and (3) poliomyelitis survivors (‘PMS’, n = 43, age: 65.12 ± 6.48, 18 
male, 41 right handed) were matched for age (p = 0.23) and handedness 
(p = 0.56), but not for sex (p = 0.014). 

3.1. Artificial neural network outcomes 

The available data set was split into a training sample (n = 206, 
68.7%) and testing sample (n = 94, 31.3%). In the training sample, cross 
entropy error was 10.148, and 48.14 in the testing sample; incorrect 
predications were 0.5% in the training sample and 20.2% in the testing 
sample. Classification summary is presented in Table 1. The predicted 
pseudo-probability of diagnosis in each cohort (confirmed diagnosis) is 
presented in Fig. 1. Receiver operating characteristic (ROC) curves are 
presented in Fig. 2. Area under the curve values were 0.987 for ALS, 
0.976 for PLS, and 0.99 for PMS. The normalised importance of the 20 
most relevant imaging variables in predicting group membership is 
shown in Fig. 3. 

3.2. Discriminant function analyses 

Two canonical discriminant functions were used in the analysis and 
the canonical correlations for the dimensions one and two are 0.759 and 
0.629, respectively. Classification outcomes are presented in Table 2. A 
graph of individuals was plot on the discriminant dimensions with the 
relevant group centroids (Fig. 4.). Case-wise statistics were inspected to 
review the clinical and demographic profiles of misclassified subjects 
individually. 

3.3. Perceptron model testing on individual with short symptom duration 

In an exploratory supplementary analysis, the artificial neural 
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network model was further tested on a sample of scans of “short- 
symptom-duration” patients, including 12 PLS patients with a less than 
5-year symptom duration (n = 12, 8 males, mean age 55.08 ± 9.35) and 
63 ALS patients with a less than 1-year symptom duration (n = 63, 44 
males, mean age 62.82 ± 11.56). The synaptic weight estimates for each 
dependent variable from the original ANN model was applied to the 
independent sample of scans. Of the 12 PLS patients, the model has 
correctly categorised 9 (75%), 2 patients were labelled as “ALS” and one 
as PMS. Of the 63 ALS patients, 60 (95.2%) were correctly classified as 
ALS by the model, and 3 were misclassified and “PMS”. Of the 43 
poliomyelitis survivors, 36 were correctly categorised as PMS, 6 were 
labelled as “ALS”, and one patient categorised as “PLS”. 

Table 1 
Classification outcomes of the multilayer perceptron model.  

Classification 

Sample Established diagnosis Predicted 

ALS PLS PMS Percent Correct 

Training ALS 152 0 0 100.0% 
PLS 0 26 0 100.0% 
PMS 1 0 27 96.4% 
Overall Percent 74.3% 12.6% 13.1% 99.5% 

Testing ALS 59 1 3 93.7% 
PLS 7 7 2 43.8% 
PMS 5 1 9 60.0% 
Overall Percent 75.5% 9.6% 14.9% 79.8%  

Fig. 1. The predicted pseudo-probability of diagnosis in each cohort (confirmed diagnosis).  

Fig. 2. Receiver operating characteristic (ROC) curves.  
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4. Discussion 

Our findings demonstrate that multiple viable strategies exist to 
categorise patients with motor neuron disorders into phenotypic sub
groups based on multimodal imaging data. These approaches interpret 
spatially coded imaging data without additional clinical information, 
complementary neurophysiology or wet biomarker data. Our results 
illustrate that discrimination is not only possible from healthy controls, 
but patient groups with relatively similar cerebral profiles may also be 
distinguished. 

In our perceptron model, we achieved superior classification in ac
curacy in patients with ALS (93%) compared to patients with PLS (43%) 
or poliomyelitis survivors (60%). This highlights the challenges of 
discriminating ALS and PLS based on cerebral imaging data alone and 

supports to wider implementation of quantitative spinal protocols 
[46–49]. With the recent publication of seminal post mortem series in 
PLS [50], the lack of anterior horn involvement is increasingly evident, 
even in patients with long symptom duration. It is noteworthy that the 
model correctly identified 75% of early-stage PLS patients in an inde
pendent sample of MRI scans based on brain data alone. The model also 
performed well on a sample of ALS patients with short symptom dura
tion (95%) demonstrating the potential clinical utility of applying ML 
frameworks to MR data of patients with suspected diagnoses. Recent 
studies of asymptomatic mutation carriers have demonstrated radio
logical changes long before symptom onset [51–53]. A future validation 
of the model would be to implement this strategy on MR data of pre
manifest mutation carriers to assess the sensitivity of the model to 
identify imaging traits consistent with a certain phenotype before 
symptom manifestation. 

Feature importance ranking offers important insights into the 
discriminatory potential of specific anatomical regions. Most descriptive 
studies compare a specific MND phenotype to healthy controls to 
characterise core, phenotype-associated pathological signatures. 
Feature importance analysis between several MND phenotypes high
lights discriminatory regions which may not be traditionally associated 
with the clinical profile of these conditions [54]. In our ANN model, 
cerebellar integrity metrics rank high, which is of interest as the char
acterisation of cerebellar degeneration in ALS is relatively recent 
[27,55,56], there are only sporadic reports of cerebellar involvement in 
PLS [57] and limited information on cerebellar involvement in polio
myelitis survivors [58–60]. Metrics of the cingulum also rank high and 
this region has been primarily implicated as a connectivity hub in fMRI 
studies of ALS [61]. External capsule integrity also helps to discriminate 
MND subtypes, which is interesting given that internal capsule 

Fig. 3. The normalised importance of the 20 most relevant imaging variables in predicting group membership.  

Table 2 
Classification outcomes of the discriminant function analyses. 90.3% of original 
grouped cases correctly classified. b. Cross validation is done only for those cases 
in the analysis. In cross validation, each case is classified by the functions 
derived from all cases other than that case. c. 68.7% of cross-validated grouped 
cases correctly classified.    

Group Predicted Group Membership   

ALS PLS PMS Percent Correct 

Original Count ALS 207 3 5 96.3% 
PLS 6 36 0 85.7% 
PMS 14 1 28 65.1% 

Cross-validatedb Count ALS 174 13 28 80.9% 
PLS 22 18 2 42.9% 
PMS 28 1 14 32.6%  
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degeneration is traditionally regarded as pathognomonic of ALS [62]. 
In this study we explored the classification efficiency of two statis

tical approaches, artificial neural networks and discriminant function 
analysis (DFA). DFA has a number of stringent data assumptions (normal 
distribution of predictor data, homoscedasticity of variables across 
groups, low degree of multicollinearity, relative lack of outliers etc.) 
which may restrict its application to large imaging datasets. Machine 
learning strategies are traditionally divided into ‘supervised’ and ‘un
supervised’ learning approaches. Each model has their respective ad
vantages and disadvantages and the choice of a specific model should be 
primarily determined by data characteristics, sample size, number of 
candidate features, associations between candidate features, outliers, 
and missing values. A variety of innovative ML approaches have been 
applied to ALS datasets to date [19,31,32,63–71], but multiple models 
are seldom applied to the same datasets to compare their respective 
accuracy [72]. Alternative approaches have also been trialled in MND to 
interpret single MR scans, such as z-scoring imaging parameters with 
reference to normative radiology data [73–75]. There are also important 
lessons to consider from studies in other neurodegenerative conditions 
[76,77], and novel approaches such as dimensionality reduction [78], 
‘deep-learning’ strategies [79,80], generative adversarial neural net
works (GAN) etc. may also prove very efficient in MND. 

The accuracy of classification models is often tested on patients with 
long symptom duration in a disease-stage by which they developed 
marked disease- or phenotype-associated patterns of pathology. From a 
clinical perspective, the categorisation of patients with a well- 
established diagnosis offers limited additional value and the real 
advantage of data-driven classification is to assign diagnostic labels to 
early-stage, short-symptom-duration patients or patients with a sus
pected diagnosis before meeting diagnostic criteria. Accordingly, a 
proposed ML model in MND should ideally be tested on patients soon 
after symptom onset. This is particularly important in PLS where diag
nostic criteria are based on symptom duration and patients often fear 
transition to ALS which carries a worse prognosis. The specific diag
nostic label provided by ANN models is just one of the outcomes to be 
considered, a clinically relevant output measure is the ‘predicted prob
ability’, i.e. how certain the proposed outcome label is. This is very 
important to consider in real-life clinical situations i.e. a high proba
bility score of group membership may inspire confidence with regards to 
the suggested diagnostic label. 

This study is not without limitations; the pre-processing of the raw 
MR data relied on computationally intensive and time-consuming 

pipelines which in their current form are ill-suited to aid clinical deci
sion making in real time. The value of including additional imaging 
indices, such as cortical volume metrics, thalamic nuclei volumes, 
amygdalar nuclei characteristics, hippocampal subfield measures etc. 
was not evaluated [81–83]. In this study we sought to test whether MR 
data alone can offer phenotypic categorisation, but the presented models 
could incorporate wet biomarker panels, functional data or clinical 
metrics which may improve patient stratification further [84,85]. The 
input variables in our models only encompassed imaging measures and 
individual demographic variables were not considered. Sexual dimor
phism is widely recognised in neuroradiology, both in healthy pop
ulations and in MND [86,87]. To account for gender effects, separate 
training data sets could be generated for male and female participants, 
but this would require larger samples for robust model training. Finally, 
the inclusion of additional LMN-predominant cohorts, such as SBMA/ 
KD, SMA, SCI would have helped to scrutinise our models further 
[47,88–91]. Notwithstanding these limitations, our findings demon
strate the feasibility of imaging-based patient categorisation in MND. 
Based on promising ML initiatives in neurodegeneration, the key pri
orities of future research include testing model accuracy on cohorts with 
short symptom duration, model validation on external data sets, multi- 
class model development instead of pursuing binary classification 
frameworks, transparent feature importance analyses, and testing pro
posed models on asymptomatic mutation carriers. While categorising 
individuals into diagnostic or phenotypic groups is of interest and may 
help to expedite the diagnosis, an obvious evolution of ML research in 
MND is the classification of patients into prognostic, survival, 
progression-rate, and disability-profile subcategories. Effective predic
tive modelling may also have a significant impact on clinical trial design 
[9,66,92]. 

5. Conclusions 

Individual patients with MND can be categorised into phenotypic 
groups based on their imaging profile if large training datasets are 
available. Upper motor neuron predominant MND patients with short 
symptom duration may be accurately categorised as likely PLS. 
Computational neuroimaging offers precision patient stratification 
strategies in MND and emerging machine-learning studies herald viable 
diagnostic, prognostic and clinical trials applications. 

Fig. 4. Canonical discriminant functions, individual patients and group centroids.  
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